

第一章 数与式

第1讲	实数及其相关概念	(3)
第2讲	实数的大小比较与运算	(4)
	整式与因式分解			
	分 式			
第5讲	二次根式	(7)
解题技工	二次根式 中教联 中教联	(8)
	第二早 刀住(狙)ヨハ寺式(组)			
第6讲	一次方程与一次方程组 ·····	(9)
	一元二次方程 ·····			
第8讲	分式方程	(12)
第9讲	一元一次不等式(组)	(14)
	第三章 函 数			
第 10 讲	平面直角坐标系与函数基础	(16)
第11 讲	一次函数	(17)
第 12 讲	反比例函数	(19)
	二次函数的图象与性质			
第 14 讲	二次函数的综合与应用	(23)
解题技工	丐训练强化二 反比例函数综合题	(25)
类型 1	反比例函数和一次函数综合			
类型 2	反比例函数和几何图形综合			
	第四章 三角形			
第 15 讲	相交线与平行线	(28)
第 16 讲	三角形及其性质	(29)
第 17 讲	全等三角形	(30)
第 18 讲	等腰三角形与直角三角形	(32)
第 19 讲	相似三角形(含位似)	(33)
第 20 讲	解直角三角形及其应用	(35)
解题技工	万训练强化三 解直角三角形的实际应用	(37)
类型 1	仰俯角			
类型 2	方向角			
类型 3	坡度、坡角			
类型 4	其他类型			

第五章 四边形

第21讲	多边形与平行四边形	(40)
第 22 讲	矩形与菱形	(42)
第 23 讲	正方形及特殊四边形的综合	(45)
解题技巧	5训练强化四 四边形中相关证明或计算	(47)
类型 1	四边形中全等三角形的判定与性质			
类型 2	特殊四边形的判定及相关计算			
第 24 讲	圆及其相关性质 中教联	(49)
第 25 讲	与圆有关的位置关系	(51)
第 26 讲	与圆有关的计算	(54)
解题技巧	5训练强化五 与切线有关的证明与计算	(56)
类型 1	与全等三角形相关			
类型 2	与相似三角形相关			
类型 3	与锐角三角函数相关			
	第七章 图形与变换			
第 27 讲	尺规作图	(58)
第 28 讲	视图与投影	(60)
第 29 讲	图形的对称、平移与旋转	(62)
	第八章 统计与概率			
第 30 讲	数据的收集、整理与描述	(65)
第31讲	数据的分析	(68)
第 32 讲	概率及其应用	(70)
专题一	函数图象问题 ······	(73)
专题二	规律探索型问题 ······	(75)
专题三	代数型应用设计题 ······	(76)
专题四	几何测量型应用题 ······	(78)
专题五	几何中的动态变换问题 ······	(80)
专题六	特殊图形的相关证明与计算 ······	(82)
专题七	抛物线背景下的几何探究型(压轴题) ······	(85)

第一章 数与式

第1讲 实数及其相关概念

- 1. (2017 **成都**)《九章算术》中注有"今两算得失相 **12**. 用科学记数法表示的数 6. 18 × 10⁻³ ,其原数为 反,要令正负以名之",意思是:今有两数若其意 义相反,则分别叫做正数与负数,若气温为零上
 - 10 ℃记作 + 10 ℃,则 3 ℃表示气温为 (
 - A. 零上3℃
- B. 零下 3 ℃
- C. 零上7℃
- D. 零下7℃
- 2. 实数 0 是
- A. 有理数

- C. 正数 3. (2017 长春)3 的相反数是
- B. $-\frac{1}{3}$ C. $\frac{1}{3}$
- D. 3
- 4. (2017 黔东南) | -2|的值是

- A. -2
- B. 2
- C. $-\frac{1}{2}$ D. $\frac{1}{2}$
- 5. (2017 宜昌)有理数 $-\frac{1}{5}$ 的倒数为

- A. 5
- B. $\frac{1}{5}$ C. $-\frac{1}{5}$
- D. -5
- **6**. 四个数 $-1,0,2,\pi$ 中的负数是
- ()
- A. -1 B. 0
- C. 2 D. π
- 7. (2017 长沙) 下列实数中, 为有理数的是 (
 - $A.\sqrt{3}$
- Β. π
- $C. \sqrt[3]{2}$
- D. 1

)

)

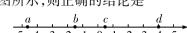
- 8. (2017 上海)下列实数中,无理数是
-)

- A. 0
- $B.\sqrt{2}$
- C. -2
- D. $\frac{2}{7}$

- 9. 下列说法正确的是
 - A.1 的相反数是-1
- B.1 的倒数是-1
- C.1 的立方根是±1
- D. -1 是无理数
- 10. (2017 长沙) 据国家旅游局统计, 2017 年端午小 长假全国各大景点共接待游客约为82600000 人次,数据82600000用科学记数法表示为

 - $A. 0.826 \times 10^6$
- B. 8. 26×10^7
- C. 82. 6×10^6
- D. 8. 26×10^8
- **11**. 用科学记数法表示的数 3.61 \times 10⁸. 它的原数是
 - A. 36 100 000 000
- B. 3 610 000 000
- C. 361 000 000
- D. 36 100 000

- - A. 0. 618


B. 0. 061 8

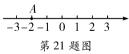
- C. 0. 006 18
- D. 0.000 618

)

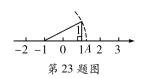
)

- **13**. (2017 **重庆** A 卷) 估计 $\sqrt{13}$ +1 的值在 (
 - A.2 和3之间
- B.3 和 4 之间
- C.4 和 5 之间
- D.5 和6之间
- $^{\prime}$ **^{\prime} 化京**) 实数 a,b,c,d 在数轴上的对应点的

第 14 题图


A. a > -4

- B. bd > 0
- C. |a| > |d|
- D. b + c > 0
- **15**. (2017 **徐州改编**)9 的算术平方根是
- **16**. (2017 **恩施州**)16 的平方根是 . .
- **17**. (2017 **咸宁改编**)27 的立方根是 .
- **18**. 若 |x| = 3 ,则 x = .
- 19. (2017 十堰) 某颗粒物的直径是 0.000 002 5,把 0.000 002 5 用科学记数法表示为
- 20. (2017 邵阳) 2016 年, 我国又有 1 240 万人告别 贫困,为世界脱贫工作作出了卓越贡献,将1240 万用科学记数法表示为 $a \times 10^n$ 的形式,则 a 的 值为



第 20 题图

21. 如图所示,数轴上点 A 所表示的数的相反数是

- 22. (2017 天水改编) 若 x 与 3 互为相反数,则 | x + 3 | 等于 .
- 23. (2017 成都) 如图, 数轴上点 A 表示的实数是

第2讲 实数的大小比较与运算

1. (2017 西宁改编) 在下列各数中, 比-2 小的数是

- A. $-\frac{1}{2}$
- B. -4

11. (2017 **凉州区**) 估计 $\frac{\sqrt{5}-1}{2}$ 与 0. 5 的大小关系是

10. (2016 梅州) 比较大小: -2 -3.

$$\frac{\sqrt{5}-1}{2}$$
_____0.5. (填">""="或"<")

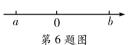
- 2. (2017 天津) 计算(-3) +5 的结果等于 (A. 2 B. -2C. 8 D. -8
- 12. 计算: $(\pi 2.018)^0 2\tan 45^\circ =$

 $\sqrt[3]{27} + |3 - \pi|$.

- 3. (2017 荆州)下列实数中最大的数是
- 13. (2017 重庆 B 卷) 计算: |-3|+(-4) = 14. 如图,是一个简单的数值运算程序,当输入x的

- B. 0
- $C.\sqrt{2}$
- (
- **4**. (2017 **泰安**)下列四个数: -3, $-\sqrt{3}$, $-\pi$, -1, 其 中最小的数是
- 值为-1时,则输出的数值为

- Α. π

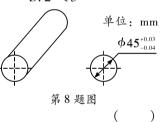


一东) 计算: $|-7| - (1-\pi)^0 + (\frac{1}{2})^{-1}$.

5. (2017 河北)下列运算结果为正数

A. $(-3)^2$

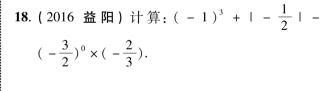
- $C.0 \times (-2.017)$
- D.2 3
- **6**. (2016 天津) 实数 a, b 在数轴上的对应点的位置 如图所示,把-a,-b,0按照从小到大的顺序排 列,正确的是



- A. -a < 0 < -b
- B. 0 < -a < -b
- C. -b < 0 < -a
- D. 0 < -b < -a

)

- 7. (2016 常德)下面实数比较大小正确的是(
 - A.3 > 7


- B. $\sqrt{3} > \sqrt{2}$
- C.0 < -2
- D. $2^2 < 3$
- 8. (2016 金华) 如图是 加工零件的尺寸要 求,现有下列直径尺 寸的产品(单位: mm),其中不合格的 是

- A. Ф45. 02
- В. Ф44. 9
- С. Ф44. 98
- D. Ф45. 01
- 9. (2017 河北) 如图是国际数学日当天淇淇和嘉嘉 的微信对话,根据对话内容,下列选项错误的是

17. (2017 长沙) 计算: $|-3| + (\pi - 2 \ 017)^{\circ} 2\sin 30^{\circ} + (\frac{1}{3})^{-1}$.

16. (2017 大庆) 计算: (-1)²⁰¹⁷ + tan45° +

19. (2017 达州) 计算:2 $017^{0} - |1 - \sqrt{2}| + (\frac{1}{3})^{-1}$

+2cos45°.

- 嘉嘉, 咱们玩一个 数学游戏, 好吗? 好啊! 玩什么游戏? 淇淇
 - 在4 4 4=6等号的左边添加 适当的数学运算符合, 使 等式成立

第9题图

- A. $4 + 4 \sqrt{4} = 6$
- B. $4 + 4^0 + 4^0 = 6$
- C. $4 + \sqrt[3]{4 + 4} = 6$
- D. $4^{-1} \div \sqrt{4} + 4 = 6$

第3讲 整式与因式分解

1. (2017 海南) 已知 a = -2,则代数式 a + 1 的值为 **11**. (2017 **绥化**)因式分解: $x^2 - 9 =$ () A. -3 B. -2C. -1D. 1 **2**. (2017 **济宁**) 单项式 $9x^{m}y^{3}$ 与单项式 $4x^{2}y^{n}$ 是同类 项,则m+n的值是 () A. 2 B. 3 C. 4 D. 5 3. (2017 咸宁)由于受 H7N9 禽流感的影响,我市某 城区今年2月份鸡的价格比1月份下降 a%,3月 份比2月份下降 b%,已知1月 24 元/千克. 设 3 月份鸡的价格为 A. m = 24(1 - a% - b%)B. m = 24(1 - a%)b%C. m = 24 - a% - b%D. m = 24(1 - a%)(1 - b%)4. (2017 吉林) 下列计算正确的是) A. $a^2 + a^3 = a^5$ B. $a^2 \cdot a^3 = a^6$ C. $(a^2)^3 = a^6$ D. $(ab)^2 = ab^2$ 5. (2017 武汉) 计算(x+1)(x+2) 的结果为() A. $x^2 + 2$ B. $x^2 + 3x + 2$ C. $x^2 + 3x + 3$ D. $x^2 + 2x + 2$ **6**. (2017 **孝感**)下列计算正确的是 (A. $b^3 \cdot b^3 = 2b^3$ B. $(a+2)(a-2) = a^2 - 4$ C. $(ab^2)^3 = ab^6$ D. (8a-7b) - (4a-5b) = 4a-12b7. (2016 聊城) 把 $8a^3 - 8a^2 + 2a$ 进行因式分解,结 果正确的是 (A. $2a(4a^2-4a+1)$ B. $8a^{2}(a-1)$ $C. 2a(2a-1)^2$ D. $2a(2a+1)^2$ 8. (2016 宁德)下列分解因式正确的是 () A. -ma - m = -m(a-1) B. $a^2 - 1 = (a-1)^2$ C. $a^2 - 6a + 9 = (a - 3)^2$ D. $a^2 + 3a + 9 = (a + 3)^2$ 9. 单项式 $-\frac{1}{2}x^2y^3$ 的系数是 ______,次数

是 .

10. (2016 大庆)若 $a^m = 2$, $a^n = 8$, 则 $a^{m+n} = _____$

- **12**. (2017 广东)已知 4a + 3b = 1,则整式 8a + 6b 3的值为 . 13. (2017 荆门) 已知实数 m, n 满足 | n - 2 | + $\sqrt{m+1} = 0$,则 m+2n 的值为 14. (2017 邵阳改编) 如图所示, 边长 为 a 的正方形中阴影部分的面积 ▲ i南改编)计算:(x+1)²-(x+1)(x-1).
- **16**. (2017 眉山) 先化简, 再求值: $(a+3)^2 2(3a+1)$ 4) .其中 a = -2.

- 17. (2016 **济宁**) 先化简, 再求值: a(a-2b) + (a + $(b)^2$, 其中 a = -1, $b = \sqrt{2}$.
- **18.** (2017 河南) 先化简, 再求值: $(2x + y)^2 + (x y)$ (x + y) - 5x(x - y), $\sharp + x = \sqrt{2} + 1$, $y = \sqrt{2} - 1$.

第4讲 分 式

1. (2017 **重庆** B 卷) 若分式 $\frac{1}{x-3}$ 有意义,则 x 的取值

B. x < 3 C. $x \neq 3$

A. x > 3

2. (2017 **海南**) 若分式 $\frac{x^2-1}{x-1}$ 的值为 0,则 x 的值为

C. $-\frac{x}{x+2}$

D. $\frac{x}{x-2}$

- **4.** 当 a = 2018 时,分式 $\frac{a^2 4}{a 2}$ 的值是_____.
- 5. (2017 枣庄) 化简: $\frac{x+3}{x^2-2x+1} \div \frac{x^2+3x}{(x-1)^2} = \underline{\hspace{1cm}}$
- **6.** (2016 昆明) 计算: $\frac{2x}{x^2-y^2} \frac{2y}{x^2-y^2} =$ _____.
- 7. (2017 宜宾) 化简: $(1 \frac{1}{a-1}) \div (\frac{a^2 4a + 4}{a^2 a})$.
- 8. (2017 荆州) 先化简, 再求值: $\frac{x+1}{x-1} \frac{1}{x^2-1}$ ÷ $\frac{1}{x+1}$,其中 x=2.

9. (2017 襄阳) 先化简, 再求值: $(\frac{1}{x+y} + \frac{1}{x-y})$ ÷ $\frac{1}{xy + y^2}$, $\sharp + x = \sqrt{5} + 2$, $y = \sqrt{5} - 2$.

- 3. (2017 山西) 化简 $\frac{4x}{x^2-4}$ $-\frac{x}{x-2}$ 的学 **中教联**为提升
 - 1. (2016 包头) 化简 $(\frac{1}{a} + \frac{1}{b}) \div (\frac{1}{a^2} \frac{1}{b^2}) \cdot ab$,其 结果是 $A. \frac{a^2b^2}{a-b} \qquad B. \frac{a^2b^2}{b-a} \qquad C. \frac{1}{a-b} \qquad D. \frac{1}{b-a}$

10. (2017 永州) 先化简, 再求值: $(\frac{x^2}{x-2} + \frac{4}{2-x})$ ÷

 $\frac{x^2 + 4x + 4}{x}$,其中 x 是 0,1,2 这三个数中合适

 $(a-\frac{4}{a})\cdot \frac{a^2}{a-2}$ 的值是

B. -1 C. 1

- 3. (2016 荆州) 当 $a = \sqrt{2} + 1, b = \sqrt{2} 1$ 时,代数式 $\frac{a^2-2ab+b^2}{a^2-b^2}$ 的值是___
- 4. (2017 乐山) 化简: $(\frac{2a^2+2a}{a^2-1} \frac{a^2-a}{a^2-2a+1}) \div \frac{2a}{a-1}$.

5. (2017 鄂州) 先化简, 再求值: $(x-1+\frac{3-3x}{x+1})$ ÷ $\frac{x^2 - x}{x + 1}$,其中 x 的值从不等式组 $\left\{ \frac{2 - x \le 3}{2x - 4 < 1} \right\}$ 的整数 解中选取.

第5讲 二次根式

- 1. (2017 淮安)下列式子为最简二次根式的是(

- B. $\sqrt{12}$ C. $\sqrt{a^2}$ D. $\sqrt{\frac{1}{a}}$
- 2. (2016 巴中)下列二次根式中,与√3是同类二次根
 - A. $\sqrt{18}$
- B. $\sqrt{\frac{1}{3}}$ C. $\sqrt{24}$
- 3. (2016 海南) 面积为 2 的正方形的出台 在 /
 - A.0 和1之间
- B.1和
- C.2 和 3 之间

- **4**. (2017 成都) 二次根式 $\sqrt{x-1}$ 中,x 的取值范围是
 - A. $x \ge 1$
- B. x > 1
- C. $x \leq 1$
- D. x < 1

()

- 5. (2017 十堰)下列运算正确的是
 - A. $\sqrt{2} + \sqrt{3} = \sqrt{5}$
 - B. $2\sqrt{2} \times 3\sqrt{2} = 6\sqrt{2}$
 - C. $\sqrt{8} \div \sqrt{2} = 2$
- D. $3\sqrt{2} \sqrt{2} = 3$
- **6**. 化简 $\sqrt{32} \times \sqrt{\frac{1}{4}}$ 的结果是

- 7. 下列根式中,不能与√3合并的是
- A. $\sqrt{\frac{1}{3}}$ B. $\frac{1}{\sqrt{3}}$ C. $\sqrt{\frac{2}{3}}$ D. $\sqrt{12}$

- 8. (2015 六盘水) 如图,表示 \(\bar{7}\) 的点在数轴上表示 时,应在哪两个字母之间

- A. C 与 D
- B. A 与 B
- C. A 与 C
- **9**. (2017 **益阳**) 代数式 $\frac{\sqrt{3-2x}}{x-2}$ 有意义,则 x 的取值 范围是
- **10**. 若两个连续整数 x, y 满足 $x < \sqrt{5} + 1 < y$,则 x + y
- 11. (2017 哈尔滨) 计算 $\sqrt{27}$ 6 $\sqrt{\frac{1}{3}}$ 的结果是
- **12**. (2017 **天津**) 计算 $(4+\sqrt{7})(4-\sqrt{7})$ 的结果等于
- 13. (2016 聊城) 计算: $\sqrt{27} \cdot \sqrt{\frac{8}{3}} \div \sqrt{\frac{1}{2}} = \underline{\hspace{1cm}}$.

- 14. (2016 泰安) 化简: $\frac{1}{2}\sqrt{12}$ $(3\sqrt{\frac{1}{3}}+\sqrt{2})$.
- **15.** (2016 盐城) 计算: $(3-\sqrt{7})(3+\sqrt{7})+\sqrt{2}(2-\sqrt{2})$.

能力提升

- 1. (2016 遂宁)下列选项中,正确的是
 - A. $\sqrt{x-1}$ 有意义的条件是 x > 1
 - B. √8是最简二次根式
 - C. $\sqrt{(-2)^2} = -2$
- D. 3 $\sqrt{\frac{2}{3}} \sqrt{24} = -\sqrt{6}$
- A. $\sqrt{2}$ B. $2\sqrt{2}$ C. $\frac{\sqrt{2}}{2}$ D. $\frac{\sqrt{2}}{4}$ 2. $(3-\sqrt{2})$ 的小数部分是)
 - A. $1 \sqrt{2}$
- B. 2 $-\sqrt{2}$
- $C_{1}\sqrt{2}-1$
- D. 1 + $\sqrt{2}$
- 3. 已知 $x = 2 \sqrt{3}$,则代数式 $(7 + 4\sqrt{3})x^2 + (2 + \sqrt{3})x$ $+\sqrt{3}$ 的值是 ()
 - A. 0

- C. 2 + $\sqrt{3}$
- D. 2 $-\sqrt{3}$
- **4.** 若 $\sqrt{x+1} + y^2 4y + 4 = 0$,则 x y 的值为 (A. 3 B. -3 C. 2
- **5**. $(2-3\sqrt{3})(2+3\sqrt{3})-(3\sqrt{3}-2)^2$ 的计算结果是
- 6. 计算: $(\sqrt{24} \sqrt{\frac{1}{3}}) (\sqrt{\frac{1}{27}} + \sqrt{6})$.
- 7. 计算: $\sqrt{48} \div \sqrt{3} + \sqrt{\frac{1}{2}} \times \sqrt{12} \sqrt{24}$.

解题技巧训练强化一 分式化简及求值

【知识筹备】

1. 分式的基本性质;

2. 分式的运算:

3. 检验,使分式有意义,分母不为0:

4. 代入求值.

【解颢步骤】

分式的化简及求值的一般步骤:

(1)有括号先计算括号内的(异分母加减法关 键是通分); 再求值: $\frac{a^2 - 3ab}{a^2 - b^2}$ ÷ $(\frac{1}{a+b} + \frac{1}{a-b})$, 其中

(2)除法转化为乘法运算;

行分解;

(4)约分;

(5)进行加减法运算时,如果是异分母的先通分, 变为同分母分式,此时分母不变,分子合并同类项;

(6)代入数字求代数式的值(代值时注意使原 分式与变形后的分式都有意义).

1. (2017 十堰) 化简: $(\frac{2}{a+1} + \frac{a+2}{a^2-1}) \div \frac{a}{a-1}$.

2. (2017 恩施州) 先化简, 再求值: $\frac{x-2}{x^2+2x}$ ÷ $\frac{x^2-4x+4}{x^2-4}-\frac{1}{2x}$, $\sharp r = \sqrt{3}$.

3. 先化简, 再求值: $(\frac{x-y}{x^2-2xy+y^2}-\frac{x}{x^2-2xy})$ ÷ $\frac{y}{x-2y}$, $\sharp \mapsto x=2\sqrt{2}$, $y=\sqrt{2}$.

4. (2017 **苏州**) 先化简, 再求值: $(1-\frac{5}{x+2}) \div \frac{x^2-9}{x+3}$, 其中 $x = \sqrt{3} - 2$.

6. (2017 日照) 先化简, 再求值: $\frac{1}{a+1} - \frac{a+1}{a^2-2a+1}$ ÷ $\frac{a+1}{a-1}$,其中 $a=\sqrt{2}$.

7. (2017 威海) 先化简 $\frac{x^2-2x+1}{x^2-1}$ ÷ $(\frac{x-1}{x+1}-x+1)$, 然后从 $-\sqrt{5} < x < \sqrt{5}$ 的范围内选取一个合适的整 数作为 x 的值代入求值.

第二章 方程(组)与不等式(组) 第6讲 一次方程与一次方程组

	4.		
	4.	-	
A	住 z山	T []	ÆĨ
	太师	NU	鸣
200			

- 1. (2016 **大连**) 方程 2x +3 =7 的解是 A. x = 5B. x = 4 C. x = 3.5D. x = 2
- **2**. (2017 杭州)设x,y,c是实数, (

- B. 若 x = y,则 xc = yc
- C. 若 x = y,则 $\frac{x}{c} = \frac{y}{c}$

9. (2018 原创)解方程: $\frac{x}{6} - \frac{30-x}{4} = 5$.

- D. 若 $\frac{x}{2c} = \frac{y}{3c}$, 则 2x = 3y
- 3. (2017 随州) 小明到商店购买"五四青年节"活动奖 品,购买20支铅笔和10本笔记本共需110元,但购 买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本 y 元,则可列方程组

 - A. $\begin{cases} 20x + 30y = 110, \\ 10x + 5y = 85 \end{cases}$ B. $\begin{cases} 20x + 10y = 110, \\ 30x + 5y = 85 \end{cases}$

 - C. $\begin{cases} 20x + 5y = 110, \\ 30x + 10y = 85 \end{cases}$ D. $\begin{cases} 5x + 20y = 110, \\ 10x + 30y = 85 \end{cases}$
- 4. (2017 长沙) 中国古代数学著作《算法统宗》中有 这样一段记载:"三百七十八里关,初日健步不为 难,次日脚痛减一半,六朝才得到其关."其大意 是,有人要去某关口,路程为378里,第一天健步 行走,从第二天起,由于脚痛,每天走的路程都为 前一天的一半,一共走了六天才到达目的地,则此 人第六天走的路程为
 - A. 24 里 B.12 里
- C.6里
- 5. (2016 宁夏)已知 x, y 满足方程组 $\begin{cases} x + 6y = 12, \\ 3x 2y = 8 \end{cases}$

x + y 的值为

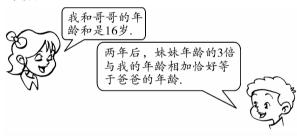
- A. 9 B. 7
- C. 5
- m 的值为 .
- 7. (2017 长沙) 方程组 $\begin{cases} x+y=1, \\ 3x-y=3 \end{cases}$ 的解是
- 8. (2016 荆州改编) 互联网"微商"经营已成为大众创 业新途径,某微信平台上一件商品标价为200元,按 标价的五折销售,仍可获利20元,设这件商品的进价 为 x 元. 则可列方程为

11. (2017 岳阳) 我市某校组织爱心捐书活动,准备 将一批捐赠的书打包寄往贫困地区,其中每包书 的数目相等. 第一次他们领来这批书的 $\frac{2}{3}$,结果 打了16个包还多40本;第二次他们把剩下的书 全部取来,连同第一次打包剩下的书一起,刚好 又打了9个包,那么这批书共有多少本?

12. (2017 广东)学校团委组织志愿者到图书馆整理 一批新进的图书. 若男生每人整理30本,女生每 人整理 20 本,共整理 680 本;若男生每人整理 50 本,女生每人整理 40 本,共能整理 1 240 本, 求男生、女生志愿者各有多少人?

能力提升

1. (2017 嘉兴) 若二元一次方程组 $\begin{cases} x+y=3, \\ 3x-5y=4 \end{cases}$ 的解


为
$$\begin{cases} x = a, \\ y = b, \end{cases}$$
 $($ $)$

- A. 1
- В. 3
- C. $-\frac{1}{4}$
- D. $\frac{7}{4}$
- 2. (2016 **齐齐哈尔**) 足球比赛规定: 胜一场得 3 分, 平一场得 1 分, 负一场得 0 分. 某足球队共进行了 6 场比赛, 得了 12 分, 该队获胜的场数可能是
 - A.1 或 2
- B.2 或 3
- C.3 或 4
- D.4 或

少元?

- **4.** (2016 **日照改编**) 已知关于 x,y 的二元一次方程 组 $\begin{cases} x+2y=3 \\ 3x+5y=m+2 \end{cases}$ 的解满足 x+y=0,则 m 的值为_____.
- 5. (2017 徐州)4 月 9 日上午 8 时,2017 徐州国际马拉松赛鸣枪开跑,一名 34 岁的男子带着他的两个孩子一同参加了比赛,下面是两个孩子与记者的对话:

第5题图

根据对话内容,请你用方程的知识帮记者求出哥 哥和妹妹的年龄. 吨,交水费 49 元; 4 月份用水 18 吨,交水费 42 元. (1)求每吨水的政府补贴优惠价和市场价分别是 多少? (2)小明家 5 月份用水 26 吨,则他家应交水费多

6. (2016 攀枝花改编) 某市为了鼓励居民节约用水,

决定实行两级收费制度. 若每月用水量不超过14 吨(含14吨),则每吨按政府补贴优惠价 m 元

收费; 若每月用水量超过 14 吨, 则超过部分每吨 按市场调节价 n 元收费, 小明家 3 月份用水 20

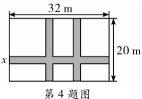
- 7. 某数学兴趣小组研究我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空. 诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.
 - (1) 求该店有客房多少间?房客多少人?
 - (2)假设店主李三公将客房进行改造后,房间数大大增加且有两种定房方案.方案一:每间客房收费 20 钱,且每间客房最多入住 4 人,方案二:每间客房收费 20 钱,一次性定客房 18 间以上(含 18 间),房费按 8 折优惠. 若诗中"众客"再次一起入住,方案一比方案二多用多少钱?

第7讲 一元二次方程

基础巩固

- **1.** (2017 **舟山**) 用配方法解方程 $x^2 + 2x 1 = 0$ 时,配方结果正确的是
 - A. $(x+2)^2 = 2$
- B. $(x + 1)^2 = 2$
- C. $(x+2)^2 = 3$
- D. $(x+1)^2 = 3$
- **2**. (2017 广元) 方程 $2x^2 5x + 3 = 0$ 的根的情况

()


- A. 有两个相等的实数根
- B. 有两个不相等的实数根
- C. 无实数根
- D. 两根异号
- 3. (2017 新疆建设兵团) 已知关于 x a = 0 的一个根为 2,则另一个根是 (

A. -3

B. -2

C. 3

- D. 6
- 4. (2017 张掖) 如图,某小 区计划在一块长为32 m, 宽为20 m 的矩形空地上 修建三条同样宽的道路, 剩余的空地上种植草坪,

使草坪的面积为 570 m^2 . 若设道路的宽为 x m,则下面所列方程正确的是

- A. (32-2x)(20-x)=570
- B. $32x + 2 \times 20x = 32 \times 20 570$
- C. $(32 x)(20 x) = 32 \times 20 570$
- D. $32x + 2 \times 20x 2x^2 = 570$
- 5. (2017 德州) 方程 3x(x-1) = 2(x-1) 的解为
- 6. (2017 **宜宾**) 经过两次连续降价,某药品销售单价 由原来的 50 元降到 32 元,设该药品平均每次降 价的百分率为 x,根据题意可列方程是______
- 7. (2017 **枣庄**) 已知关于 x 的一元二次方程 ax^2 2x-1=0 有两个不相等的实数根,则 a 的取值范围是
- 8. (2016 **攀枝花改编**) 若 x = -2 是关于 x 的一元二次方程 $x^2 + \frac{3}{2}ax a^2 = 0$ 的一个根,则 a 的值为
- 9. (2017 贵港一模) 我市某楼盘原计划以每平方米 5 000 元的均价对外销售,由于国家"限购"政策 出台,购房者持币观望,房产商为了加快资金周 转,对该楼盘价格经过两次下调后,决定以每平方 米 4 050 元的均价开盘销售.
 - (1)求两次下调的平均百分率;
 - (2)对开盘当天购房的客户,房产商在开盘均价的基础上,还给予以下两种优惠方案供选择: ①打9.9折销售;②不打折,一次性送装修费每平

方米 40 元,某客户在开盘当天购买了该楼盘的一套 120 平方米的商品房,试问该客户选择哪种方案购房更优惠一些?

1. (2016 **荆门**) 已知 3 是关于 x 的方程 x^2 - (m + 1)x + 2m = 0 的一个实数根,并且这个方程的两个实数根恰好是等腰 $\triangle ABC$ 的两条边的边长,则 $\triangle ABC$ 的周长为

A. 7

- B. 10
- C. 11
- D. 10 或 11
- **2.** (2016 眉山改编) 设 m, n 是一元二次方程 $x^2 + 2x 2$ 017 = 0 的两个根,则 $m^2 + 3m + n = ...$
- 3. (2017 眉山) 东坡某烘焙店生产的蛋糕礼盒分为 六个档次,第一档次(即最低档次)的产品每天生 产76件,每件利润10元. 调查表明:生产提高一 个档次的蛋糕产品,该产品每件利润增加2元.
 - (1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;
 - (2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?

- **4.** (2017 北京) 关于 x 的一元二次方程 $x^2 (k+3)x + 2k + 2 = 0$.
 - (1) 求证: 方程总有两个实数根:
 - (2) 若方程有一根小于1, 求 k 的取值范围.

第8讲 分式方程

- **1**. 下列关于 x 的方程中,是分式方程的是 ()
 - A. $3x = \frac{1}{2}$
- B. $\frac{x+2}{5} = \frac{3+x}{4}$
- C. $\frac{1}{x} = 2$
- D. 3x 2y = 1
- **2.** 将分式方程 $1 \frac{2x}{x-1} = \frac{3}{x-1}$ 去分母,得到正确的整式方程是 ()
 - A. 1 2x = 3
- B. x 1
- C. 1 + 2x = 3
- D. x 1
- 3. (2017 **滨州**) 分式方程 $\frac{x}{x-1}$ 1 = $\frac{x}{(x-1)(x+2)}$ 的解为
 - A. x = 1

A. 1

- B. x = -1
- C. 无解

C. 1

C. 4

- D. x = -2
- **4.** (2017 **成都**) 已知 x = 3 是分式方程 $\frac{kx}{x-1} \frac{2k-1}{x} = 2$ 的解,那么实数 k 的值为 ()
 - 2 的 \mathbf{H} ,那么头级 \mathbf{k} 的但 \mathbf{J} A. -1 B.0
- D. 2

D. 5

- 5. (2017 毕节)关于 x 的分式方程 $\frac{7x}{x-1}$ + 5 = $\frac{2m-1}{x-1}$
 - 有增根,则m的值为

B. 3

- ()
- 6. (2017 新疆建设兵团) 某工厂现在平均每天比原 计划多生产 40 台机器,现在生产 600 台机器所需 的时间与原计划生产 480 台机器所用的时间相 同,设原计划每天生产 x 台机器,根据题意,下面 列出的方程正确的是
 - A. $\frac{600}{40} = \frac{480}{100}$
- B. $\frac{600}{x+40} = \frac{480}{x}$
- C. $\frac{600}{r} = \frac{480}{r + 40}$
- D. $\frac{600}{x} = \frac{480}{x 40}$
- 7. (2017 株洲) 分式方程 $\frac{4}{x} \frac{1}{x+2} = 0$ 的解是
- **8**. (2017 **泸州**) 关于 x 的分式方程 $\frac{x+m}{x-2} + \frac{2m}{2-x} = 3$ 的解为正实数,则实数 m 的取值范围是
- 9. (2017 济宁)解方程: $\frac{2x}{x-2} = 1 \frac{1}{2-x}$.

10. (2017 泰州)解方程: $\frac{x+1}{x-1} + \frac{4}{1-x^2} = 1$.

各,促进经济发展,增强对外贸易的竞争 三离港口 420 km 的普通公路升级成了同 可以及的高速公路,结果汽车行驶的平均速度比 原来提高了 50%,行驶时间缩短了 2 h,求汽车 原来的平均速度.

11. (2017 淄博) 某内陆城市为了落实国家"一带一

- 12. (2017 贵阳) "2017 年张学友演唱会"于6月3日 在我市关山湖奥体中心举办,小张去离家 2 520 米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有 23 分钟,于是他跑步回家,拿到票后立刻找到一辆"共享单车"原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的 1.5 倍.
 - (1)求小张跑步的平均速度;
 - (2)如果小张在家取票和寻找"共享单车"共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.

能力提升

1. 对于非零实数 a,b,规定 $a \otimes b = \frac{1}{b} - \frac{1}{a}$,若 $2 \otimes$ (2x-1)=1,则x的值为

- A. $\frac{5}{6}$ B. $\frac{5}{4}$ C. $\frac{3}{2}$ D. $-\frac{1}{6}$
- **2**. 若关于 x 的分式方程 $\frac{2x-a}{x-2} = \frac{1}{2}$ 的解为非负数,则

a 的取值范围是

A. $a \ge 1$

B. a > 1

C. $a \ge 1 \perp a \ne 4$

D. $a > 1 \exists a \neq 4$

- 3. (2016 黔西南) 关于 x 的两个方: 与 $\frac{2}{x+m} = \frac{1}{x-3}$ 有一个解相同,则

- 4. 为迎接教育均衡发展的验收,一教育部门要对某 校增添桌子、椅子共800个.已知桌子的单价比椅 子的单价贵140元, 若用1800元购买桌子的个 数正好与用540元购买椅子的个数相同.
 - (1) 求桌子、椅子的单价各是多少元;
 - (2)若一个桌子与四个椅子配为一套,要购买这 800 个桌椅使得它们正好配套,则需要多少元 资金?

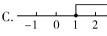
- 5. (2017 绥化) 甲、乙两个工程队计划修建一条长 15 千米的乡村公路,已知甲工程队每天比乙工程 队每天多修路 0.5 千米, 乙工程队单独完成修路 任务所需天数是甲工程队单独完成修路任务所需 天数的 1.5 倍.
 - (1) 求甲、乙两个工程队每天各修路多少千米?
 - (2) 若甲工程队每天的修路费用为 0.5 万元, 乙 工程队每天的修路费用为 0.4 万元,要使两个工 程队修路总费用不超过5.2万元,甲工程队至少 修路多少天?

- 6. (2016 娄底) 甲、乙两同学的家与学校的距离均为 3 000 米. 甲同学先步行 600 米, 然后乘公交车夫 学校,乙同学骑自行车去学校.已知甲步行速度是 乙骑自行车速度的 $\frac{1}{2}$,公交车的速度是乙骑自行 车速度的2倍.甲乙两同学同时从家出发去学校, 结果甲同学比乙同学早到2分钟.
 - (1)求乙骑自行车的速度;
 - (2) 当甲到达学校时, 乙同学离学校还有多远?

第9讲 一元一次不等式(组)

基础巩固

1. (2017 株洲)已知实数 a,b 满足 a+1>b+1,则下 列选项可能错误的是


A, a > b

B. a + 2 > b + 2

C. -a < -b

- D. 2a > 3b
- **2**. (2017 **六盘水改编**) 不等式 3x + 7 ≥ x + 9 的解集 表示在数轴上正确的是

)

集是

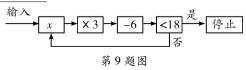
B. $x \leq 2$

A. x > -1C. $-1 < x \le 2$

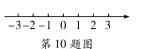
- D. x > -1 或 $x \le 2$
- **4**. (2017 **自贡**)不等式组 $\begin{cases} x+1>2, \\ 3x-4 \le 2 \end{cases}$ 的解集在数轴上

表示正确的是

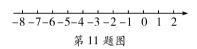
- x < 2,则 k 的取值范围为)


A. k > 1

B. k < 1

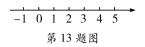

 $C. k \ge 1$

- D. $k \leq 1$
- 6. (2017 宿迁)已知 4 < m < 5,则关于 x 的不等式组 $\begin{cases} x-m<0, \\ 4-2x<0 \end{cases}$ 的整数解共有


- A.1 个 B.2 个 C.3 个 D.4 个
- 7. (2017 河南) 不等式组 $\begin{cases} x-2 \le 0, \\ \frac{x-1}{2} < x \end{cases}$ 的解集是
- 8. (2016 **苏州**) 不等式组 $\begin{cases} x+2>1, \\ 2x-1<8-x \end{cases}$ 的最大整数
- 9. (2017 烟台)运行程序如图所示,从"输入实数 x" 到"结果是否 < 18" 为一次程序操作, 若输入 x 后 程序操作仅进行了一次就停止,则 x 的取值范围

10. (2016 连云港)解不等式 $\frac{1+x}{3} < x-1$,并将解集 在数轴上表示出来.

解集在数轴上表示出来.



12. (2016 南京) 解不等式组 $\begin{cases} 3x+1 \leq 2(x+1), \\ -x < 5x+12 \end{cases}$ 并 写出它的整数解.

13. (2017 天津)解不等式组 $\begin{cases} x+1 \ge 2 & \text{(1)}, \\ 5x \le 4x + 3 & \text{(2)}, \end{cases}$

请结合题意填空,完成本题的解析.

- (1)解不等式①,得_____;
- (2)解不等式②,得;
- (3)把不等式①和②的解集在数轴上表示出来;
- (4)原不等式组的解集为_____

14. (2017 锦州) 某电子超市销售甲、乙两种型号的 蓝牙音箱,每台进价分别为 240 元,140 元,下表 是近两周的销售情况:

销售	销售	销售收入	
时段	甲种型号	乙种型号	胡告权八
第一周	3 台	7台	2 160 元
第二周	5台	14 台	4 020 元

- (1)求甲、乙两种型号蓝牙音箱的销售单价;
- (2)若超市准备用不多于6000元的资金再采购这两种型号的蓝牙音箱共30台,求甲种型号的蓝牙音箱最多能采购多少台.

能力提升

1. (2017 **遵义**) 不等式 6 - 4*x* ≥ 3*x* - 8 的非负整数解为 ()

A.2 个 B.3 个 C.4 个 D.5 个

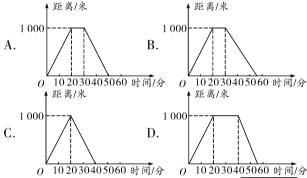
2. (2017 **齐齐哈尔**) 为有效开展"阳光体育"活动, 某校计划购买篮球和足球共50个,购买资金不超 过3000元. 若每个篮球80元,每个足球50元, 则篮球最多可购买 ()

A. 16 个 B. 17 个 C. 33 个 D. 34 个

3. (2016 烟台) 已知不等式组 $\begin{cases} x \ge -a-1 & ①, \\ -x \ge -b & ②, \end{cases}$ 女轴上表示不等式①,②的解集如图所示,

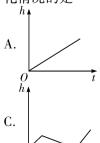
《知上表示小等式①,②的解集如图所示 值为

- 4. (2017 沈阳) 近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注. 某单位计划在室内安装空气净化装置,需购进 A,B 两种设备,每台 B 种设备价格比每台 A 种设备价格多0.7万元,花 3 万元购买 A 种设备和花 7.2 万元购买 B 种设备的数量相同.
 - (1)求 A 种、B 种设备每台各多少万元?
 - (2)根据单位实际情况,需购进A,B 两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?


第三章 兩 数

第10讲 平面直角坐标系与函数基础

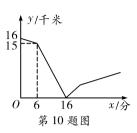
础巩固


- 1. (2017 桂平三模) 若点 A(a+1,b-1) 在第二象 限,则点 B(-1,b) 在
 - A. 第一象限
- B. 第二象限
- C. 第三象限
- D. 第四象限
- **2**. (2017 **无锡)**函数 $y = \frac{x}{2-x}$ 中自变量 x 的取值范围

 - A. $x \neq 2$
- B. $x \ge 2$
- $C. x \leq 2$
- 3. (2017 泸州)已知点 A(a,1) 与点 原点对称,则a+b的值为 B. -5 C.3
- **4.** (2017 **西宁**) 在平面 首角 坐标 系中, 将点 A(-1)-2)向右平移3个单位长度得到点B,则点B关 于x 轴的对称点B'的坐标为
 - A. (-3, -2)
- B. (2,2)
- C.(-2,2)
- D. (2, -2)
- 5. (2017 凉山州) 小明和哥哥从家里出发去买书,从 家出发走了20分钟到一个离家1000米的书店. 小明买了书后随即按原路返回;哥哥看了20分钟 书后,用15分钟返回家.下面的图象中哪一个表 示哥哥离家时间与距离之间的关系

6. (2017 淄博) 小明做了一个数学 实验:将一个圆柱形的空玻璃杯 放入形状相同的无水鱼缸内,看 作一个容器,然后小明对准玻璃 杯口匀速注水,如图所示,在注水

过程中,杯底始终紧贴鱼缸底部,则下图可以近似 地表示出容器最高水位 h 与注水时间 t 之间的变 化情况的是

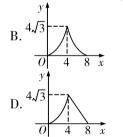

- В. h. D.
- 7. 点 A(-1,2) 关于 y 轴的对称点的坐标是
- 8. 已知点 A(1,3), O 是坐标原点, 将线段 OA 绕点 O逆时针旋转 90°,点 A 旋转后的对应点是 A_1 ,则点

- A_1 的坐标是
- **9**. (2017 安顺) 在函数 $y = \frac{\sqrt{x-1}}{x-2}$ 中, 自变量 x 的取

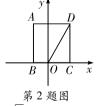
值范围是

10. (2017 重庆 B 卷) 甲、乙两 人在一条笔直的道路上相 16 向而行, 甲骑自行车从 A地到 B 地, 乙驾车从 B 地 到A地,他们分别以不同 的速度匀速行驶,已知甲

6 分钟后,乙才出 **坐**餐个过程中,甲、乙



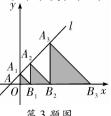
距离 γ (千米)与甲出发的时间x(分)之间 $_{\text{HJ}}$ 人 $_{\text{5}}$ 如图所示,当乙到达终点 $_{\text{7}}$ 时,甲还需 分钟到达终点 B.


能力提升

1. (2017 天水) 如图, 在等腰 $\triangle ABC + AB = AC = 4 \text{ cm},$ $\angle B = 30^{\circ}$, 点 P 从点 B 出 发,以 $\sqrt{3}$ cm/s 的速度沿 BC

方向运动到点 C 停止,同时点 Q 从点 B 出发,以 1 cm/s 的速度沿 BA - AC 方向运动到点 C 停止, $\dot{\Xi} \triangle BPQ$ 的面积为 $\gamma(\text{cm}^2)$,运动时间为 $\chi(\text{s})$,则 下列最能反映 y 与 x 之间函数关系的图象是

2. (2017 牡丹江) 如图,矩形 ABCD 的边 BC 在 x 轴上,点 A 在第二象 限,点 D 在第一象限, $AB = 2\sqrt{3}$, OD = 4, 将矩形 ABCD 绕点 O 旋 转,使点 D 落在 x 轴上,则点 C 对 应点的坐标是



A. $(-\sqrt{3},1)$

B. $(-1,\sqrt{3})$

C. $(-1,\sqrt{3})$ 或 $(1,-\sqrt{3})$ D. $(-\sqrt{3},1)$ 或 $(1,-\sqrt{3})$

3. (2017 安顺) 如图, 在平面直角 坐标系中,直线 l:y=x+2 交 x轴于点 A, 交 y 轴于点 A_1 , 点 A_2, A_3, \cdots 在直线 l 上,点 B_1, B_2 , B_3 ,…在x 轴的正半轴上,若 $\triangle A_1 O B_1$, $\triangle A_2 B_1 B_2$, $\triangle A_3 B_2 B_3$, …,依次均为等腰直角三角 形,直角顶点都在x轴上,则

第3题图

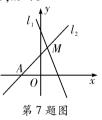
第 n 个等腰直角三角形 $A_nB_{n-1}B_n$ 顶点 B_n 的横坐 标为

第 11 讲 一次函数

1. (2017**陕西**) 若一个正比例函数的图象经过<math>A(3,(-6), B(m, -4) 两点, 则 m 的值为 (

- B. 8
- C. -2
- D. -8
- 2. (2017 **沈阳**) 在平面直角坐标系中, 一次函数y= x-1 的图象是

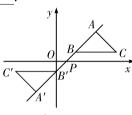
3. (2017 苏州) 若点 A(m,n) 在一次函数 y = 3x + b的图象上, $\mathbb{R}_{3m-n} > 2$, 则 b 的取值范围为


- A. b > 2
 - B. b > -2
- C, b < 2
- (D. b < -2
- **4**. (2017 湘潭) 一次函数 y = ax + b 的图 象如图所示,则不等式 $ax + b \ge 0$ 的解 集是

B. $x \leq 2$

- A. $x \ge 2$ C. $x \ge 4$
- D. $x \leq 4$
- 第4题图
- 5. (2017 贵阳) 若直线 y = -x + a 与直线 y = x + b的交点坐标为(2,8),则a-b的值为 B. 4 C.6A. 2 D. 8
- **6**. (2017 **泰安**)已知一次函数 y = kx m 2x 的图象 与 γ 轴的负半轴相交,且函数值 γ 随自变量x的 增大而减小,则下列结论正确的是
 - A. k < 2, m > 0
- B. k < 2, m < 0
- C. k > 2, m > 0
- D. k < 0, m < 0

)


7. (2017 **陕西**) 如图,已知直线 l_1 : y = -2x + 4 与直线 $l_2: y = kx + b$ $(k \neq 0)$ 在第一象限交于点 M. 若直线 l_2 与 x 轴的交点为 A(-2,0),则 k 的取值范围是

- A. -2 < k < 2
- (B. -2 < k < 0
- C. 0 < k < 4
- D. 0 < k < 2
- **8**. (2017 **天津**) 若正比例函数 $\gamma = kx(k \, \text{是常数}, k \neq k)$ 0)的图象经过第二、四象限,则 k 的值可以是 (写出一个即可).
- **9**. (2017 荆州) 将直线 y = x + b 沿 y 轴向下平移 3 个单位长度,点A(-1,2)关于 γ 轴的对称点落在 平移后的直线上,则b的值为
- **10**. (2017 **大连**) 在平面直角坐标系 xOy 中,点 A,B的坐标分别为(3,m),(3,m+2),直线 y=2x+b与线段 AB 有公共点,则 b 的取值范围为 (用含 m 的代数式表示).

- 11. (2016 巴中) 已知二元一次方程组 $\begin{cases} x-y=-5, \\ x+2y=-2 \end{cases}$ 的解 为 $\begin{cases} x = -4, \\ y = 1, \end{cases}$ 则在同一平面直角坐标系中,直线 $l_1: y = x + 5$ 与直线 $l_2: y = -\frac{1}{2}x - 1$ 的交点坐标为
- 12. 某市出租车白天的收费起步价为14元,即路程 不超过3公里时收费14元,超过的部分每公里 收费 2.4 元. 如果乘客白天乘坐出租车的路程为 x(x>3)公里,乘车费为y元,那么y与x之间的

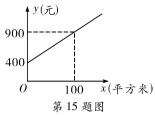
坐标系中, △ABC 的顶点 A 在第一象限,点 B,C 的坐标分别为(2, C'1), (6,1), $\angle BAC = 90^{\circ}$, AB = AC, 直线 AB 交 x 轴 于点 P. 若 △ABC 与

第13题图

 $\triangle A'B'C'$ 关于点 P 成中心对称,则点 A'的坐标

- 14. (2017连云港) 某蓝莓种植生产基地产销两旺, 采摘的蓝莓部分加工销售,部分直接销售,且当 天都能销售完. 直接销售是40元/斤,加工销售 是130元/斤(不计损耗). 已知基地雇佣20名 工人,每名工人只能参与采摘和加工中的一项工 作,每人每天可以采摘70斤或加工35斤,设安 排 x 名工人采摘蓝莓,剩下的工人加工蓝莓.
 - (1) 若基地一天的总销售收入为 γ 元,求 γ 与x的函数关系式;
 - (2) 试求如何分配工人,才能使一天的销售收入 最大? 并求出最大值.

15. (2017上海)甲、乙两家绿化养护公司各自推出 了校园绿化养护服务的收费方案.


甲公司方案:每月的养护费用 $\gamma(\Lambda)$ 与绿化面积 x(平方米)是一次函数关系,如图所示.

乙公司方案:绿化面积不超过1000平方米时, 每月收取费用5500元;绿化面积超过1000平方 米时,每月在收取5500元的基础上,超过部分 每平方米收取4元.

(1)求如图所示的y与x的函数解析式(不要求

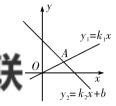
写出定义域):


(2)如果某学校目前的绿化面积是1200平方 米,试通过计算说明:选择哪家公司的服务,每月 的绿化养护费用较少.

16. (2017 江西) 如图, 是一种斜挎包 部分、单层部分和调节扣构成. 小 过调节扣加长或缩短单层部分的云皮,可以医疗 带的长度(单层部分与双层部分长度的和,其中 调节扣所占的长度忽略不计)加长或缩短.设单 层部分的长度为x cm,双层部分的长度为y cm, 经测量,得到如下数据:

单层部分的 长度 x(cm)	 4	6	8	10	•••	150
双层部分的 长度 y(cm)	 73	72	71		•••	

- (1)根据表中数据的规律,完成以上表格,并直 接写出 γ 关于x的函数解析式;
- (2)根据小敏的身高和习惯,挎带的长度为120 cm 时,背起来正合适,请求出此时单层部分的 长度:
- (3)设挎带的长度为l cm,求l 的取值范围.


- 1. (2017 大庆)对于函数 y = 2x 1,下列说法正确的
 - A. 它的图象过点(1,0)
 - $B. \gamma$ 随着 x 值增大而减小
 - C. 它的图象经过第二象限
 - D. 当 x > 1 时, y > 0
- 2. (2017 **滨州**) 若点 M(-7,m), N(-8,n) 都在函 数 $y = -(k^2 + 2k + 4)x + 1(k 为常数)$ 的图象上, 则 m 和 n 的大小关系是

A. m > n B. m < n C. m = n D. 不能确定

3. 同一直角坐标系中,一次函数 $y_1 = k_1 x + b$ 与正比 例函数 $y_2 = k_2 x$ 的图象如图所示,则满足 $y_1 \ge y_2$ 的 x 的取值范围是 (

 $A. x \leq -2$

- B. $x \ge -2$ C. x < -2D. x > -2第3题图
- 4. (2017 成都) 如图, 正比例函 数 $y_1 = k_1 x$ 和一次函数 $y_2 = k_2 x + b$ 的图象相交于 点 A(2,1), 当 x < 2 时, (填">"或 " <").

第4题图

第5题图

- **5.** (2017 **孝感**) 如图,将直线 y = -x 沿 y 轴向下平 移后的直线恰好经过点 A(2, -4) ,且与 γ 轴交于 点 B,在 x 轴上存在一点 P 使得 PA + PB 的值最 小,则点P的坐标为
- 6. (2016 阿坝州) 某学校计划组织 500 人参加社会 实践活动,与某公交公司接洽后,得知该公司有 A,B 型两种客车,它们的载客量和租金如表所示:

	A 型客车	B型客车
载客量(人/辆)	45	28
租金(元/辆)	400	250

经测算,租用A,B型客车共13辆较为合理,设租 用 A 型客车 x 辆,根据要求回答下列问题:

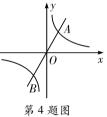
(1)用含 x 的代数式填写下表:

	车辆数(辆)	载客量(人)	租金(元)
A 型客车	x	45 <i>x</i>	400 <i>x</i>
B型客车	13 - x		

(2)采用怎样的租车方案可以使总的租车费用最 低,最低为多少?

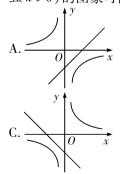
第 12 讲 反比例函数

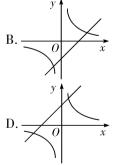
- **1.** (2017 **沈阳**) 点 A(-2,5) 在反比例函数 $y = \frac{k}{2}$ $(k \neq 0)$ 的图象上,则 k 的值是 A. 10 B. 5 C. -5D. -10
- 2. (2017 天津) 若点 A(-1,y1), B(1,y2), C(3,y3) 在反比例函数 $y = -\frac{3}{r}$ 的图象上,则 y_1, y_2, y_3 的 大小关系是
 - A. $y_1 < y_2 < y_3$
- B. $y_2 < y_3 < y$
- C. $y_3 < y_2 < y_1$
- D. $y_2 < y_1$
- 3. (2016 广州) 一司机驾驶汽车从甲; 均80千米/小时的速度用了4个/ 他按原路匀速返回时,汽车的速度 v 千米/小时与时 间 t 小时的函数关系是

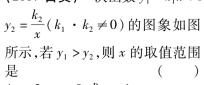

A.
$$v = 320t$$

B.
$$v = \frac{320}{t}$$

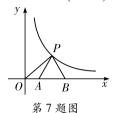
C.
$$v = 20t$$

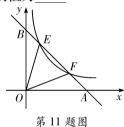

D.
$$v = \frac{20}{t}$$


4. (2017 广东) 如图, 在同一平面 直角坐标系中,直线 $y = k_1 x(k_1)$ $\neq 0$) 与双曲线 $y = \frac{k_2}{r} (k_2 \neq 0)$ 相交于A,B两点,已知点A的 坐标为(1,2),则点 B 的坐标


)

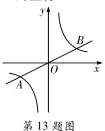
- A. (-1, -2)
- B. (-2, -1)
- C. (-1, -1)
- D. (-2, -2)
- 5. (2017 娄底) 如图,在同一平面直角坐标系中,反 比例函数 $y = \frac{k}{x}$ 与一次函数 y = kx - 1(k) 为常数,


6. (2017 **自贡**) 一次函数 $y_1 = k_1 x + b$ 和反比例函数

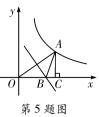


- A. -2 < x < 0 或 x > 1
- B. -2 < x < 1
- C. x < -2或 x > 1
- D. x < -2 或 0 < x < 1

- 7. (2017 天门) 如图, P(m,m) 是反比例函数 $y = \frac{9}{x}$ 在第一象限内的图象上的一点,以P为顶点作等 边 $\triangle PAB$,使AB落在 $x轴上,则 \triangle POB$ 的面积为
- C. $\frac{9+12\sqrt{3}}{4}$ D. $\frac{9+3\sqrt{3}}{2}$
- **8.** (2017 **淮安**) 若反比例函数 γ =
 - 习象经过点A(m,3),则


- **9**. (2017 连云港)设函数 $y = \frac{3}{x}$ 与 y = -2x 6 的图 象的交点坐标为(a,b),则 $\frac{1}{a} + \frac{2}{b}$ 的值是
- **10**. (2017 **陕西**)已知 A, B 两点分别在反比例函数 y = $\frac{3m}{x}(m\neq 0)$ 和 $y = \frac{2m-5}{x}(m\neq \frac{5}{2})$ 的图象上,若点 A与点B关于x轴对称,则m的值为
- 11. (2017 遵义) 如图, 点 E, F 在 函数 $y = \frac{2}{1}$ 的图象上,直线 EF 分别与 x 轴、y 轴交于点 A, B, 且 BE: BF = 1:3, 则 $\triangle EOF$ 的面积是

- 12. (2017 湘潭)已知反比例函 数 $y = \frac{k}{r}$ 的图象过点 A(3,1).
 - (1)求反比例函数的解析式;
 - (2)若一次函数 $y = ax + 6(a \neq 0)$ 的图象与反比 例函数的图象只有一个交点,求一次函数的解 析式.


- 13. (2017 成都) 如图, 在平面直角坐标系 xOy 中,已 知正比例函数 $y = \frac{1}{2}x$ 的图象与反比例函数 y = $\frac{k}{a}$ 的图象交于 A(a, -2), B 两点.
 - (1)求反比例函数的表达式和点 B 的坐标;

(2)P 是第一象限内反比例函数图象上的一点, 过点 P 作 γ 轴的平行线,交直线 AB 于点 C,连接 PO, 若 $\triangle POC$ 的面积为 3, 求点 P 的坐标.

于 $A(x_1,y_1)$ 和 $B(x_2,y_2)$ 两点,则 $3x_1y_2-9x_2y_1$ 的 值为

5. (2017 西宁) 如图, 点 A 在双曲 线 $y = \frac{\sqrt{3}}{x}(x > 0)$ 上,过点 A 作 $AC \perp x$ 轴,垂足为 C, OA 的垂直 平分线交 OC 于点 B, 当 AC = 1时, $\triangle ABC$ 的周长为 .

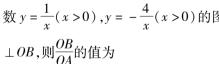
6. (2017 宁夏) 直线 y = kx + b 与反比例函数 $y = \frac{6}{x}$ (x>0)的图象分别交于点 A(m,3)和点 B(6,n), 与坐标轴分别交于点 C 和点 D. (1) 求 直线 AB 的解析式;

$P \in \mathcal{L}_x$ 轴上的一个动点, 当 $\triangle COD$ 与目似时, 求点 P 的坐标.

第6题图

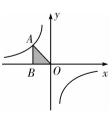
1. (2017 海南)如图, △ABC 的三 个顶点分别为 A(1,2), B(4, 2), C(4,4). 若反比例函数 y = $\frac{k}{x}$ 在第一象限内的图象与

 $\triangle ABC$ 有交点,则 k 的取值范围 是


A. $1 \le k \le 4$

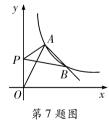
B. 2 ≤ k ≤ 8

C. $2 \le k \le 16$


D. $8 \le k \le 16$

2. (2017 **衡阳**) 如图,已知点 A,B 分别在反比例函 数 $y = \frac{1}{x}(x > 0)$, $y = -\frac{4}{x}(x > 0)$ 的图象上,且 OA

 $C.\sqrt{3}$


D. 4

- **3**. (2017 **永州**) 如图,已知反比例函数 $y = \frac{k}{x}(k)$ 为常 数, $k \neq 0$)的图象经过点A,过A点作AB $\perp x$ 轴,垂 足为 B. 若 $\triangle AOB$ 的面积为 1,则 k =
- **4.** (2017 **菏泽**) 直线 y = kx(k > 0) 与双曲线 $y = \frac{6}{x}$ 交

- 7. (2017 德阳) 如图, 函数 $y = \begin{cases} 2x(0 \le x \le 3), \\ -x + 9(x > 3) \end{cases}$ 的图 象与双曲线 $y = \frac{k}{r} (k \neq 0, x > 0)$ 相交于点 A(3, m)
 - (1)求双曲线的解析式及点 B 的坐标;

和点 B.

(2) 若点 P 在 y 轴上, 连接 PA, PB, 求当 PA + PB 的值是最小时点P的坐标.

第13 讲 二次函数的图象与性质

基础巩固

1. (2017 哈尔滨) 抛物线 $y = -\frac{3}{5}(x + \frac{1}{2})^2 - 3$ 的顶

点坐标是

- A. $(\frac{1}{2}, -3)$
- B. $\left(-\frac{1}{2}, -3\right)$
- C. $(\frac{1}{2},3)$
- D. $\left(-\frac{1}{2},3\right)$
- **2.** (2017 **常德**) 将抛物线 $y = 2x^2$ 向右平移 3 个单 位,再向下平移5个单位,得到的 /
 - A. $y = 2(x-3)^2 5$
- B. $y = 2(x + 3)^2 + 5$
- C. $y = 2(x-3)^2 + 5$
- D. $y = 2(x+3)^2 5$
- **3**. (2017 连云港) 已知抛物线 $y = ax^2 (a > 0)$ 过 $A(-2,y_1)$ 、 $B(1,y_2)$ 两点,则下列关系式一定正 确的是
 - A. $y_1 > 0 > y_2$
- B. $y_2 > 0 > y_1$
- C. $y_1 > y_2 > 0$
- D. $y_2 > y_1 > 0$
- **4.** (2017 **丽水**) 将函数 $y = x^2$ 的图象用下列方法平 移后,所得的图象不经过点A(1,4)的方法是

)

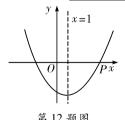
- A. 向左平移1个单位
- B. 向右平移3个单位
- C. 向上平移3个单位
- D. 向下平移 1 个单位
- **5**. (2017 **苏州**) 若二次函数 $y = ax^2 + 1$ 的图象经过 点(-2,0),则关于x的方程 $a(x-2)^2+1=0$ 的 实数根为
 - A. $x_1 = 0$, $x_2 = 4$
- B. $x_1 = -2$, $x_2 = 6$
- C. $x_1 = \frac{3}{2}, x_2 = \frac{5}{2}$
- D. $x_1 = -4, x_2 = 0$
- **6.** (2017 朝阳) 若函数 $y = (m-1)x^2 6x + \frac{3}{2}m$ 的 图象与x轴有且只有一个交点,则m的值为

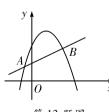
- A. -2 或 3
- B. -2 或 -3
- C.1或-2或3
- D.1或-2或-3

)

- 7. (2017 **徐州**) 若函数 $y = x^2 2x + b$ 的图象与坐标 轴有三个交点,则 b 的取值范围是
 - A. b < 1 且 $b \neq 0$
- B. b > 1
- C. 0 < b < 1
- D. b < 1

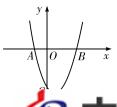
8. (2016 毕节) 一次函数 $y = ax + c(a \neq 0)$ 与二次函 数 $y = ax^2 + bx + c(a \neq 0)$ 在同一平面直角坐标系 中的图象可能是

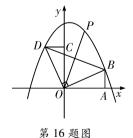




- (\mathbf{z}) 如图所示, 抛物线 γ =ax + ox + c 的顶点为 B(-1,3),与x轴的交点A在点(-3, 0)和(-2,0)之间,以下结论:
- $(1)b^2 4ac = 0:(2)a + b + c > 0:$
- ③2a b = 0;④c a = 3 其中正 确的有

)


- A. 1
- B. 2
- C. 3 D. 4
- **10**. (2017 枣庄) 已知函数 $\gamma = ax^2 2ax 1$ (a 是常 数, $a\neq0$),下列结论正确的是
 - A. 当 a = 1 时,函数图象经过点(-1,1)
 - B. 当 a = -2 时,函数图象与 x 轴没有交点
 - C. 若 a < 0,函数图象的顶点始终在 x 轴的下方
 - D. 若 a > 0,则当 $x \ge 1$ 时,y 随 x 的增大而增大
- 11. (2017 上海) 已知一个二次函数的图象开口向 上,顶点坐标为(0,-1),那么这个二次函数的 解析式可以是 (只需写一个).
- **12.** (2017 **兰州**) 如图, 若抛物线 $y = ax^2 + bx + c$ 上的 P(4,0), Q 两点关于它的对称轴 x=1 对称,则 Q点的坐标为

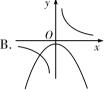


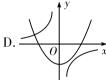
- 第12题图
- 第13题图
- **13**. (2017 **咸宁**) 如图, 直线 y = mx + n 与抛物线 y = $ax^{2} + bx + c$ 交于 A(-1,p), B(4,q) 两点, 则关 于x的不等式 $mx + n > ax^2 + bx + c$ 的解集是
- **14**. (2016 镇江) a, b, c 是实数, 点 A(a+1,b), B(a+2,c)在二次函数 $y=x^2-2ax+3$ 的图象 上,则b,c的大小关系是b c(用">"或"<"号填空).

- **15**. (2016 黔南州)已知二次函数 $y = x^2 + bx + c$ 的图 象与 γ 轴交于点 C(0, -6), 与 x 轴的一个交点 坐标是A(-2,0).
 - (1) 求二次函数的解析式,并写出顶点 D 的 坐标;
 - (2)将二次函数的图象沿x轴向左平移 $\frac{5}{2}$ 个单 位长度,当 γ <0时,求x的取值范围.

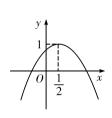
- **16**. 如图, Rt $\triangle AOB$ 的直角边 OA 在 x 轴上, OA = 2, AB = 1,将 Rt $\triangle AOB$ 绕点 O 逆时针旋转 90°得到 Rt $\triangle COD$, 抛物线 $y = -\frac{5}{6}x^2 + bx + c$ 经过 B, D两点.
 - (1)求二次函数的解析式;
 - (2)连接 BD,点 P 是抛物线上一点,直线 OP 把 $\triangle BOD$ 的周长分成相等的两部分,求点 P 的 坐标.

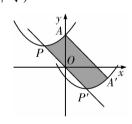
能力提升


1. (2017 乐山) 已知二次函数 $y = x^2 - 2mx$ (m 为常 数),当 $-1 \le x \le 2$ 时,函数值 y的最小值为-2,


A. $\frac{3}{2}$ B. $\sqrt{2}$ C. $\frac{3}{2}$ $\vec{\mathbb{Q}}\sqrt{2}$ D. $-\frac{3}{2}$ $\vec{\mathbb{Q}}\sqrt{2}$

2. (2017 广州) $a \neq 0$, 函数 $y = \frac{a}{x}$ 与 $y = -ax^2 + a$ 在


同一直角坐标系中的图象大致可能是



3. (2017 **锦州**) 如图,二次函数 $y = ax^2 + bx + c$ 的图象 与y轴正半轴相交,其顶点坐标为($\frac{1}{2}$,1),下列结 论:①abc > 0;②a = b;③a = 4c - 4;④方程 $ax^2 + bx$ +c=1有两个相等的实数根,其中正确的结论是 . (只填序号即可)

第3题图

第4题图

4. (2017 **阿坝州**) 如图, 抛物线的顶点为 P(-2,2), 与 γ 轴交于点A(0,3). 若平移该抛物线使其顶点 P沿直线移动到点 P'(2, -2), 点 A 的对应点为 A',则抛物线上PA 段扫过的区域(阴影部分)的 面积为 .

第14讲 二次函数的综合与应用

1. 某超市有一种商品,进价为 2 元,据市场调查,销售单价是 13 元时,平均每天销售量是 50 件,而销售价每降低 1 元,平均每天就可以多售出 10 件.若设降价后售价为 x 元,每天利润为 y 元,则 y 与 x 之间的函数关系为

A.
$$y = 10x^2 - 100x - 160$$

B.
$$y = -10x^2 + 200x - 360$$

C.
$$y = x^2 - 20x + 36$$

A. 1

D.
$$y = -10x^2 + 310x - 2340$$

t	0	1	2	3	4	5	6	7	
h	0	8	14	18	20	20	18	14	•••

下列结论:①足球距离地面的最大高度为 20 m; ②足球飞行路线的对称轴是直线 $t = \frac{9}{2}$; ③足球被踢出 9 s 时落地; ④足球被踢出 1.5 s 时, 距离地面的高度是 11 m,其中正确结论的个数是()

C. 3


D. 4

3. (2017 天门)飞机着陆后滑行的距离 s(单位:米) 关于滑行的时间 t(单位:秒)的函数解析式是 s = $60t - \frac{3}{2}t^2$,则飞机着陆后滑行的最长时间为秒.

B. 2

- 4. (2017 绍兴) 某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为 50 m. 设饲养室长为 x(m),占地面积为 y(m²).
 - (1)如图 1,问饲养室长 x 为多少时,占地面积 y 最大?
 - (2)如图 2,现要求在图中所示位置留 2 m 宽的门,且仍使饲养室的占地面积最大,小敏说:"只

要饲养室长比(1)中的长多2 m 就行了."请你通过计算,判断小敏的说法是否正确.

第4题图

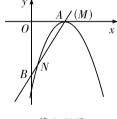
- 5. (2017 辽阳) 某超市销售樱桃,已知樱桃的进价为 15 元/千克,如果售价为 20 元/千克,那么每天可 售出 250 千克,如果售价为 25 元/千克,那么每天 可获利 2 000 元,经调查发现:每天的销售量 y(千克)与售价 x(元/千克)之间存在一次函数关系.
 - (1)求 y 与 x 之间的函数关系式;
 - (2) 若樱桃的售价不得高于 28 元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?

- **6**. (2017 **深圳**) 如图, 抛物线 $y = ax^2 + bx + 2$ 经过点 A(-1,0), B(4,0),交y 轴于点C.
 - (1)求抛物线的解析式(用一般式表示);
 - (2)点 D 为 y 轴右侧抛物线上一点,是否存在点 D 使 $S_{\triangle ABC} = \frac{2}{3} S_{\triangle ABD}$?若存在,请直接给出点 D

坐标;若不存在,请说明理由;

(3)将直线 BC 绕点 B 顺时针旋转 45° ,与抛物线 交于另一点 E,求 BE 的长.

的坐标;若不存在请说明理由.

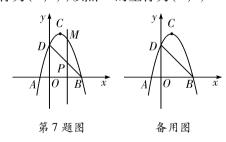


第6题图

交于点 A 和点 B, 抛物线 $y = -x^2 + bx + c$ 的顶点 M 在直线 AB 上, 且抛物线与直线 AB 的另一个交点为 N.

i城港模拟) 已知直线 y = 2x - 5 与 x 轴和

- (1)如图,当点 M与点 A 重合时,求抛物线的解析式;
- (2)在(1)的条件下,求点 N 的坐标和线段 MN 的长;
- (3) 抛物线 $y = -x^2 + bx + c$ 在直线 AB 上平移,是 否存在点 M,使得 $\triangle OMN$ 与 $\triangle AOB$ 相似? 若存在,直接写出点 M 的坐标;若不存在,请说明理由.



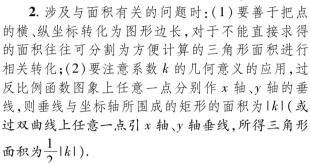
O A X

第8题图

备用图

7. (2017 赤峰) 如图, 二次函数 $y = ax^2 + bx + c$ ($a \neq 0$) 的图象交 x 轴于 A , B 两点, 交 y 轴于点 D , 点 B 的坐标为(3,0), 顶点 C 的坐标为(1,4).

- (1)求二次函数的解析式和直线 BD 的解析式;
- (2) 点 P 是直线 BD 上的一个动点, 过点 P 作 x 轴 的垂线, 交抛物线于点 M, 当点 P 在第一象限时, 求线段 PM 长度的最大值;
- (3) 在抛物线上是否存在异于 B, D 的点 Q, 使 $\triangle BDQ$ 中 BD 边上的高为 $2\sqrt{2}$? 若存在求出点 Q

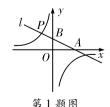

解题技巧训练强化二 反比例函数综合题

【知识筹备】反比例函数的相关知识:

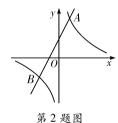
- 1. 反比例函数的图象与性质;
- 2. 反比例函数解析式的确定;
- 3. 反比例函数中 k 的几何意义.
- 一次函数的相关知识:
- 1. 一次函数的图象与性质;
- 2. 一次函数解析式的确定.
- 3. 一次函数的几何变换.

【解题技巧】反比例函数的综合题常见解题方法如下:

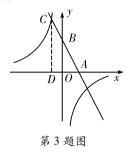
1. 求函数解析式,一般先通过一个已知点坐标求得反比例函数解析式,再由反比1 得另一个交点坐标,再将这两点坐之 一次函数解析式.



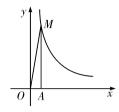
3. 涉及根据图象求不等式的解集或函数值大小时,实质是已知两函数值的大小判断自变量的取值范围,只需以交点为界限,观察交点左、右两边区域的两个函数图象上、下位置关系,从而写出自变量的取值范围或函数值的大小.


总之,在解决反比例函数图象与一次函数图象综合题时,一定要注意待定系数法,分类讨论思想和数形结合思想的应用,通过观察图象,可以使得问题清晰明了,简单易懂.

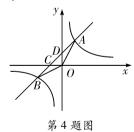
类型1 反比例函数和一次函数综合


- **1.** (2017 **阿坝州**) 如图, 在平面直角坐标系中, 过点 A(2,0) 的直线 l 与 y 轴交于点 B, $\tan \angle OAB = \frac{1}{2}$, 直线 l 上的点 P 位于 y 轴左侧, 且到 y 轴的距离 为 1.
 - (1)求直线 l 的表达式;
 - (2) 若反比例函数 $y = \frac{m}{x}$ 的图象经过点 P, 求 m 的值.

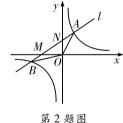
- 2. (2017 **云顺**)已知反比例函数 $y_1 = \frac{k}{x}$ 的图象与一次函数 $y_2 = ax + b$ 的图象交于点A(1,4) 和点 B(m,-2).
 - (1)求这两个函数的表达式;
 - (2)根据图象直接写出一次函数的值大于反比例函数值的 *x* 的取值范围.



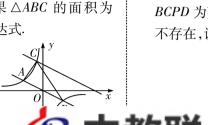
- (1)求一次函数与反比例函数的解析式:
- (2)求两函数图象的另一个交点坐标:
- (3)直接写出不等式 $kx + b \leq \frac{n}{x}$ 的解集.

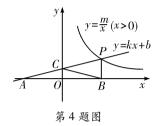

类型 2 反比例函数和几何图形综合

- 1. 反比例函数 $y = \frac{k}{x}$ 在第一象限的图象如图所示, 过点A(1,0)作 x 轴的垂线,交反比例函数 $y = \frac{k}{x}$ 的图象于点 M, $\triangle AOM$ 的面积为 3.
 - (1)求反比例函数的解析式;
 - (2)设点 B 的坐标为(t,0),其中 t>1,若以 AB 为 一边的正方形有一个顶点在反比例函数 $y = \frac{k}{x}$ 的 图象上,求 t 的值.



第1题图


- 4. (2016 泰州) 如图,点 A(m,4),B(-4,n) 在反比 例函数 $y = \frac{k}{x}(k > 0)$ 的图象上,经过点 A, B 的直 线与x 轴相交于点C,与y 轴相交于点D.
 - (1) 若 m = 2, 求 n 的值;
 - (2) 求 m + n 的值;
 - (3)连接 OA, OB, 若 $tan \angle AOD + tan \angle BOC = 1$, 求 直线 AB 的函数关系式.

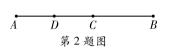

- **2**. (2017 **绵阳**) 如图,设反比例函数的解析式为 $\gamma =$ $\frac{3k}{x}(k>0)$.
 - (1)若该反比例函数图象与正比例函数图象 y = 2x 的图象有一个交点的纵坐标为 2 ,求 k 的值;
 - (2)若该反比例函数与过点 M(-2,0) 的直线 l: y = kx + b 的图象交于 A, B 两点, 如图所示, 当 $\triangle ABO$ 的面积为 $\frac{16}{3}$ 时,求直线 l 的解析式.

- $-\frac{1}{2}x$ 与反比例函数 $y = \frac{k}{x}$ 的图象交于关于原点 对称的A,B两点,已知A点的纵坐标是3.
 - (1)求反比例函数的表达式;
 - (2)将直线 $y = -\frac{1}{2}x$ 向上平移后与反比例函数 在第二象限内交于点 C,如果 $\triangle ABC$ 的面积为 48,求平移后的直线的函数表达式.

- **3**. (2016 **聊城**) 如图, 在直角坐标系中, 直线 $y = \frac{1}{2}$ **4**. 如图, 一次函数 y = kx + b 的图象与反比例函数 y = kx + b $=\frac{m}{x}(x>0)$ 的图象交于点 P(n,2), 与 x 轴交于 点 A, 与 y 轴交于点 C, PB \perp x 轴于点 B, 且 AC = BC, $S_{\wedge PBC} = 4$.
 - (1)求一次函数、反比例函数的解析式;
 - (2)反比例函数图象上是否存在点 D,使四边形 BCPD 为菱形? 如果存在,求出点 D 的坐标;如果 不存在,说明理由.

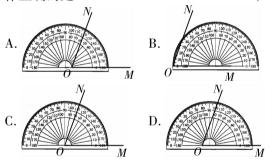
第四章 三角形

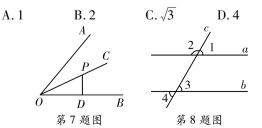
第15讲 相交线与平行线


1. (2017 随州) 某同学用剪刀沿直线 将一片平整的银杏叶剪掉一部分 (如图),发现剩下的银杏叶的周长 比原银杏叶的周长要小,能正确解 释这一现象的数学知识是

第1题图

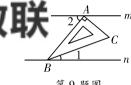
A. 两点之间线段最短

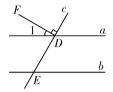

- B. 两点确定一条直线
- C. 垂线段最短
- D. 经过直线外一点,有且只有一条直线与这条直 线平行
- **2**. 如图, C,D 是线段 AB 上的两点, 的中点. 若 AB = 10 cm, BC = 4 cm,


C. 4 cm A. 2 cm B. 3 cm

D. 6 cm

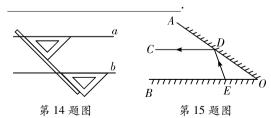
3. (2017 河北) 用量角器测∠MON 的度数,下列操 作正确的是




- **4**. (2017 广东)已知 $\angle A = 70^{\circ}$,则 $\angle A$ 的补角为
 - A. 110°
- B. 70°
- $C.30^{\circ}$
- D. 20°
- 5. (2017 **常德**)若一个角为 75°,则它的余角的度数 为
 - A. 285°
- B. 105°
- C. 75°
- D. 15°
- 6. (2017 钦州一模) 如图所示,直 线 a, b 被直线 c 所截, $\angle 1$ 与 ∠2 是)
 - A. 内错角
- B. 同位角
- C. 同旁内角
- D. 邻补角 第6题图
- 7. (2017 台州) 如图,点 $P \neq \angle AOB$ 平分线 $OC \perp -$ 点, $PD \perp OB$,垂足为D,若PD = 2,则点P到边OA的距离是

8. (2017 山西) 如图, 直线 a, b 被直线 c 所截, 下列

- 条件不能判定直线 a 与 b 平行的是)
- A. $\angle 1 = \angle 3$
- B. $\angle 2 + \angle 4 = 180^{\circ}$
- C. $\angle 1 = \angle 4$
- D. $\angle 3 = \angle 4$
- 9. (2017 宁波)已知直线 m//n,将一块含 30°角的直 角三角板 ABC 按如图方式放置($\angle ABC = 30^{\circ}$), 其中A,B 两点分别落在直线 m,n 上, 若 $\angle 1$ = 20°,则∠2 的度数为
 - A. 20°
- B. 30°
- C. 45°
- D. 50°

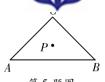

第9题图

第10题图

- **10**. (2017 **孝感**) 如图,直线 a//b,直线 c 与直线 a,b分别交于点 D, E, 射线 $DF \perp$ 直线 c, 则图中与 ∠1 互余的角有)
 - A. 4 个 B. 3 个 C. 2 个
- D. 1 个
- 11. (2017 泸州) 下列命题是真命题的是)
 - A. 四边都相等的四边形是矩形
 - B. 菱形的对角线相等
 - C. 对角线互相垂直的平行四边形是正方形
 - D. 对角线相等的平行四边形是矩形
- 12. (2017 包头)已知下列命题:
 - ①若 $\frac{a}{b} > 1$,则 a > b;
 - ②若 a + b = 0,则|a| = |b|;
 - ③等边三角形的三个内角都相等;
 - ④底角相等的两个等腰三角形全等.

其中原命题与逆命题均为真命题的个数是

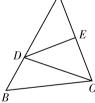
-)
- A. 1 个 B. 2 个
- C.3 个
- D. 4 个
- 13. (2016 雅安)1. 45°=
- 14. (2017 吉林) 我们学过用直尺和三角尺画平行线 的方法,如图所示,直线 a // b 的根据是



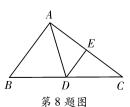
15. 如图, $\angle AOB$ 的两边 OA, OB 均为平面反光镜, $\angle AOB = 35^{\circ}$,在 OB 上有一点 E,从 E 点射出一 東光线经 OA 上的点 D 反射后,反射光线 DC 恰 好与 OB 平行,则 $\angle DEB$ 的度数是

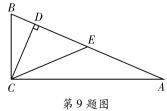
第16讲 三角形及其性质

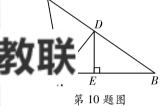
础巩固

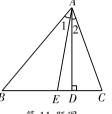

- 1. (2017 长沙) 一个三角形的三个内角的度数之比 为1:2:3,则这个三角形一定是
 - A. 锐角三角形
- B. 首角三角形
- C. 钝角三角形
- D. 等腰直角三角形
- 2. (2017 金华)下列各组数中,不可能成为一个三角 形三边长的是
 - A. 2, 3, 4
- B.5,7,7
- C.5,6,12
- D.6,8,10
- 3. (2017 株洲)如图,在△ABC中, ∠ RAC= x / R=
 - 2x, $\angle C = 3x$, 则 $\angle BAD =$
 - A. 145°
- B. 150°

- 4. (2017 淮安) 若一个三角形的两边长分别为 5 和 8.则第三边长可能是
 - A. 14
- B. 10
- C. 3
- D. 2
- 5. (2017 湖州) 如图,已知在 Rt △ABC 中,∠C = 90°,AC = BC,AB = 6,点 P 是 Rt $\triangle ABC$ 的重心,则 点 P 到 AB 所在直线的距离等于
 - A. 1

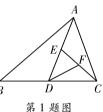

- **6**. 如图,在 $\triangle ABC$ 中,AB=5,BC=6,AC=7,点D, E, F 分别是 $\triangle ABC$ 三边的中点,则 $\triangle DEF$ 的周长 为
 - A. 9
- B. 10
- C. 11
- D. 12

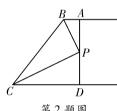

第6题图


第7题图

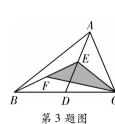

- 7. (2016 黄石) 如图所示,线段 AC 的垂直平分线交 线段 AB 于点 D, $\angle A = 50^{\circ}$, 则 $\angle BDC =$ (D. 130° A. 50° B. 100° C. 120°
- 8. (2016 天门) 如图, 在 $\triangle ABC$ 中, AC 的垂直平分线 分别交 AC, BC 于 E, D 两点, EC = 4, $\triangle ABC$ 的周 长为23,则△ABD的周长为
 - A. 13
- B. 15
- C. 17
- D. 19

- 9. (2017 大连) 如图,在 $\triangle ABC$ 中, $\angle ACB = 90^{\circ}$, $CD \perp$ AB, 垂足为 D, 点 E 是 AB 的中点, CD = DE = a, 则 AB 的长为
- A.2a
- B. $2\sqrt{2}a$
- C. 3a
- D. $\frac{4\sqrt{3}}{3}a$
- **10**. (2017 **防城区模拟**) 如图, AD 是△ABC 中∠BAC 的角平分线, $DE \perp AB$ 于点 $E, S_{\land ABC} = 7, DE = 2$, AB = 4,则AC长为 .



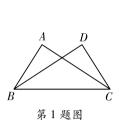


第11 题图


11. 如图,在 $\triangle ABC$ 中, $AD \perp BC$,AE 平分 $\angle BAC$,若 $\angle 1 = 30^{\circ}, \angle 2 = 20^{\circ},$ 則 $\angle B =$.


- 1. 如图, AD 是 $\triangle ABC$ 的中线, CE 是 $\triangle ACD$ 的中线, DF 是 $\triangle CDE$ 的中线,如果 $\triangle DEF$ 的面积是 2,那 么 $\triangle ABC$ 的面积为
 - A. 12
- B. 14
- C. 16
- D. 18

- 2. (2016 湖州) 如图, AB // CD, BP 和 CP 分别平分 $\angle ABC$ 和 $\angle DCB$, AD 过点 P, 且与 AB 垂直. 若 AD = 8,则点P到BC的距离是 B. 6 C. 4
- 3. 如图,在 $\triangle ABC$ 中,已知点D为BC上一点,E,F分别为 AD, BE 的中点, 且 $S_{\land ABC} = 8$ cm², 则图中 阴影部分 \triangle CEF 的面积是 cm².

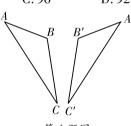


- 第4题图
- **4**. (2016 遵义) 如图, AC⊥BC, AC = BC, D 是 BC 上 一点,连接 AD,与 $\angle ACB$ 的平分线交于点 E,连接 BE. 若 $S_{\triangle ACE} = \frac{6}{7}$, $S_{\triangle BDE} = \frac{3}{14}$, 则 AC =_____.

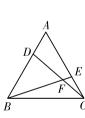
第17讲 全等三角形

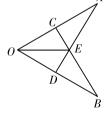
基础巩固

- **1.** 如图,已知∠ $ABC = \angle DCB$,下列所给条件不能证明 $\triangle ABC \cong \triangle DCB$ 的是 ()
 - A. $\angle A = \angle D$
- B. AB = DC
- C. $\angle ACB = \angle DBC$
- D.AC = BD

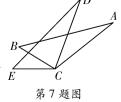


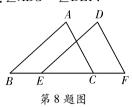
E S


2 中教职

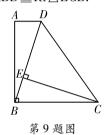

- **2.** 如图,已知 $\triangle ABC \cong \triangle DEB$,点 E 在 AB 上,若 DE = 8, BC = 5,则线段 AE 的长为 () A. 3 B. 5 C. 6 D. 4
- 3. 如图,在 $\triangle PAB$ 中,PA = PB,M,N,K分别是 PA,PB,AB上的点,且 AM = BK,BN = AK,若 $\angle MKN = 42^{\circ}$,则 $\angle P$ 的度数为
 - A. 44°
- B. 66°
- $C.96^{\circ}$
- D. 92°

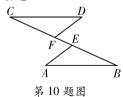
- 4. (2016 成都) 如图, $\triangle ABC \cong \triangle A'B'C'$, 其中 $\angle A = 36^{\circ}$, $\angle C' = 24^{\circ}$, 则 $\angle B = ...$
- 5. 如图,在等边 $\triangle ABC$ 中,点 D 在边 AB 上,点 E 在 边 AC 上, $\triangle A$ = 60°,且 AD = CE,BE 与 CD 相交于 F,则 $\triangle BFC$ 的度数为

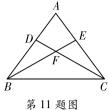


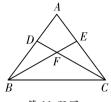

第5题图

第6题图


- **6.** 如图,已知 OA = OB,点 C 在 OA 上,点 D 在 OB 上,OC = OD,AD 与 BC 相交于点 E,那么图中全等的三角形共有____对.


8. (2017 云南) 如图,点 *E*, *C* 在线段 *BF* 上, *BE* = *CF*, *AB* = *DE*, *AC* = *DF*, 求证: ∠*ABC* = ∠*DEF*.


9. 如图,四边形 ABCD 中,AD//BC, $\angle A = 90^{\circ}$, BD = BC, $CE \perp BD$ 于点 E. 求证: $Rt \triangle ABD \cong Rt \triangle ECB$.



10. (2017 **武汉**) 如图,点 C,F,E,B 在一条直线上, $\angle CFD = \angle BEA, CE = BF, DF = AE,$ 写出 CD 与 AB 之间的关系,并证明你的结论.

- 11. (2017 连云港) 如图,已知等腰三角形 ABC 中, AB = AC, 点 D, E 分别在边 AB, AC 上, 且 AD =AE,连接 BE,CD,交于点 F.
 - (1) 判断 $\angle ABE$ 与 $\angle ACD$ 的数量关系,并说明 理由:
 - (2)求证:过点 A, F 的直线垂直平分线段 BC.

▲『正确结论的序号是

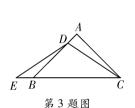
A. 2 对

 $\widehat{(4)}DA = DC.$

1. 如图,在正方形 ABCD 中,连接

BD,点O是BD的中点,若M,N是

边 AD 上的两点,连接 MO,NO,并


则图中的全等三角形共有(

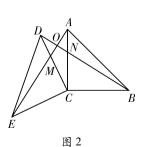
B.3 对

分别延长交边 BC 于两点 M', N', B N'

相交于点 O, $\triangle ABO \cong \triangle ADO$. 下列结论: $\widehat{ABC} \perp BD$; $\widehat{ABC} = CD$; $\widehat{ABC} \cong \triangle ADC$;

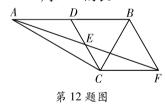
2. (2016 南京) 如图, 四边形ABCD的对角线 AC, BD

)


C.4 对

第1题图

D.5 对

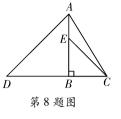

- 3. 已知 $\triangle ABC$ 是等腰直角三角形, $\angle A = 90^{\circ}$, 点 D 在线 段 AB 上,点 E 是直线 BC 上一点,且 $\angle DEC$ =
 - $\angle DCE$, $\bigcirc \bigcup \frac{EB}{AD} = 1$
- 4. (2017 哈尔滨) 已知: △ACB 和△DCE 都是等腰 直角三角形, $\angle ACB = \angle DCE = 90^{\circ}$, 连接 AE, BD交于点 O, AE 与 DC 交于点 M, BD 与 AC 交于 点 N.
 - (1)如图 1,求证:AE = BD;
 - (2)如图2,若AC = DC,在不添加任何辅助线的情 况下,请直接写出图2中四对全等的直角三角形.

第4题图

- **12**. (2017 荆门) 已知:如图,在 Rt △ACB 中,∠ACB $=90^{\circ}$,点 $D \in AB$ 的中点,点 $E \in CD$ 的中点,过 点 C 作 CF//AB 交 AE 的延长线于点 F.
 - (1)求证: $\triangle ADE \cong \triangle FCE$;
 - (2)若 $\angle DCF = 120^{\circ}, DE = 2$,求 BC 的长.

第 18 讲 等腰三角形与直角三角形

基础巩固


- 1. 若△ABC 三个内角的度数分别为 $m, n, p, 且 \mid m p$ $n + (n-p)^2 = 0$,则这个三角形为
 - A. 等腰三角形
- B. 等边三角形
- C. 直角三角形
- D. 等腰直角三角形
- 2. (2017 包头) 若等腰三角形的周长为 10 cm, 其中 一边长为2 cm,则该等腰三角形的底边长为
 - A. 2 cm
- B. 4 cm
- 3. 等腰三角形的一个角是80°,则它

的长为

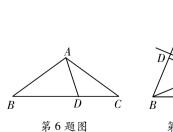
A. 12

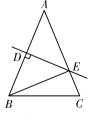
C. 5

9. (2017 江西) 如图 1 是一把园林剪刀, 把它抽象为 图 2, 其中 OA = OB. 若剪刀张开的角为 30° , 则

B. 7

D. 13


8. 如图, $AB \perp CD \equiv B$, $\triangle ABD$ 和


 $\triangle BCE$ 都是等腰首角三角形, 如果 CD = 17, BE = 5, 那么 AC

- A. 50°
- $B.80^{\circ}$
- C.50°或80°
- D. 20°或 80°
- **4.** 如图, $\triangle ABC$ 中, AB = AC, $D \in BC$ 中点, 下列结论 中不正确的是 ()
 - A. $\angle B = \angle C$
 - B. $AD \perp BC$
 - C. AD 平分∠BAC
 - D.AB = 2BD

- 第4题图
- **5**. (2017 海南)已知 $\triangle ABC$ 的三边长分别为 4,4,6, 在 $\triangle ABC$ 所在平面内画一条直线,将 $\triangle ABC$ 分割 成两个三角形,使其中的一个是等腰三角形,则这 样的直线最多可画()条.
 - A. 3
- B. 4
- C. 5
- D. 6
- **6**. (2017 **滨州**) 如图,在△ABC 中,AB = AC,D 为 BC 上一点,且 DA = DC, BD = BA,则 $\angle B$ 的大小为
 - A. 40°
- B. 36°
- $C.30^{\circ}$
- D. 25°

- 第7题图
- 7. (2017 柳南区三模) 如图, 等腰 △ABC 中, AB = AC = 8, BC = 5, AB 的垂直平分线 DE 交 AB 于点 D,交 AC 于点 E,则 $\triangle BEC$ 的周长为
 - A. 13
- B. 14
- C. 15
- D. 16

- 第9题图
- **10**. (2017 镇江)如图, Rt △ABC中. $\angle ACB = 90^{\circ}$, AB = 6, 点 $D \neq AB$ 的中点, $\forall AC$ 的中点 E 作 EF//CD 交 AB 于点 F,则 EF =

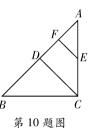
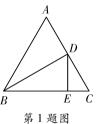
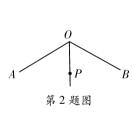
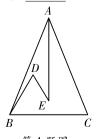
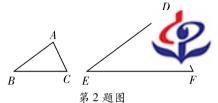




图 2

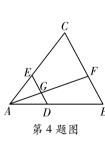


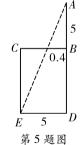
- **1**. 如图,在等边 $\triangle ABC$ 中, BD 平分 $\angle ABC$ 交 AC 于 点 D, 过点 D 作 $DE \perp BC$ 于点 E, 且 CE = 1.5, 则 AB 的长为
 - A. 3
- B. 4. 5
- C.6
- D. 7. 5

- 2. (2016 河北)如图,∠AOB = 120°,OP 平分∠AOB, 且 OP = 2. 若点 M, N 分别在 OA, OB 上,且 $\triangle PMN$ 为等边三角形,则满足上述条件的 $\triangle PMN$ 有
 - A. 1 个
- B. 2 个
- C.3 个
- D.3 个以上
- 3. (2017 黔西南)已知一个等腰三角形的两边长分 别为3和6,则该等腰三角形的周长是
- **4.** 如图,在 $\triangle ABC$ 中,AB = AC,D,E是 $\triangle ABC$ 内的两点, AE 平分 $\angle BAC$, $\angle D = \angle DBC = 60^{\circ}$, $\stackrel{*}{=}$ BD =5 cm, DE = 3 cm, 则 BC 的长是 cm.



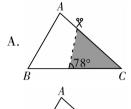
第4题图

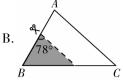

第19讲 相似三角形(含位似)


基础巩固

- **1.** (2017 **兰州**) 已知 $2x = 3y(y \neq 0)$, 则下面结论成立的是
 - A. $\frac{x}{y} = \frac{3}{2}$
- B. $\frac{x}{3} = \frac{2}{y}$
- C. $\frac{x}{y} = \frac{2}{3}$
- D. $\frac{x}{2} = \frac{y}{3}$
- **2**. (2017 **连云港**) 如图,已知△*ABC*∽△*DEF*,*AB*: *DE* = 1:2,则下列等式一定成立的是 ()

- A. $\frac{BC}{DF} = \frac{1}{2}$
- B. $\frac{\angle A$ 的度数 $= \frac{1}{2}$
- C. $\frac{\triangle ABC}{\triangle DEF}$ 的面积 = $\frac{1}{2}$
- D. $\frac{\triangle ABC}{\triangle DEF}$ 的周长 = $\frac{1}{2}$
- 3. (2017 重庆 B 卷) 已知 $\triangle ABC \hookrightarrow \triangle DEF$, 且相似比为 1: 2,则 $\triangle ABC$ 与 $\triangle DEF$ 的面积比为 () A. 1: 4 B. 4: 1 C. 1: 2 D. 2: 1
- **4.** (2017 **哈尔滨**) 如图,在 $\triangle ABC$ 中, D, E 分别为 AB, AC 边上的点, DE // BC, 点 F 为 BC 边上一点, 连接 AF 交 DE 于点 G,则下列结论中一定正确的是
 - A. $\frac{AD}{AB} = \frac{AE}{EC}$
- B. $\frac{AG}{GF} = \frac{AE}{BD}$
- C. $\frac{BD}{AD} = \frac{CE}{AE}$
- D. $\frac{AG}{AF} = \frac{AC}{EC}$

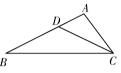




- 5. (2017 眉山)"今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?" 这是我国古代数学《九章算术》中的"井深几何" 问题,它的题意可以由图获得,则井深为 () A.1.25 尺 B.57.5 尺 C.6.25 尺 D.56.5 尺
- 6. (2016 安徽) 如图, $\triangle ABC$ 中, AD 是中线, BC = 8, $\angle B = \angle DAC$, 则 线段 AC 的长为 ()
 - $\begin{array}{c|c} B = 2BAC, \text{ M} \\ \hline \\ B.4\sqrt{2} & B \\ \end{array}$
 - A. 4 C. 6

- D. 4 $\sqrt{3}$
- <u>∕</u> <u>B</u> D 第6题图

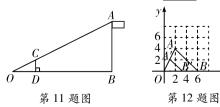
7. (2017 **枣庄**) 如图,在 $\triangle ABC$ 中, $\angle A = 78^{\circ}$, AB = 4, AC = 6, 将 $\triangle ABC$ 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是



第8题图

8. (2017 永州) 如图,在 $\triangle ABC$ 中,点 $D \neq AB$ 边上的一点,若 $\triangle ACD = \triangle B$,AD = 1,AC = 2, $\triangle ADC$ 的面积为 1,则 $\triangle BCD$ 的面积为 () A.1 B.2 C.3 D.4

9. (2017 自贡) 在 △ABC 中, MN// BC 分别交 AB, AC 于点 M, N, 若 AM = 1, MB = 2, BC = 3, 则 MN


的长为 .

M N B

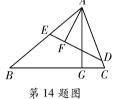
第10题图

11. (2017 **吉林**) 如图, 数学活动小组为了测量学校 旗杆 *AB* 的高度,使用长为 2 m 的竹竿 *CD* 作为 测量工具. 移动竹竿,使竹竿顶端的影子与旗杆 顶端的影子在地面 *O* 处重合,测得 *OD* = 4 m, *BD* = 14 m,则旗杆 *AB* 的高为 m.

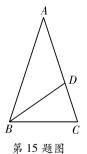
12. (2017 **长沙**) 如图, $\triangle ABO$ 三个顶点的坐标分别 为 A(2,4) , B(6,0) , O(0,0) , 以原点 O 为位似

中心,把这个三角形缩小为原来的 $\frac{1}{2}$,可以得到 $\triangle A'B'O$,已知点 B'的坐标是(3,0),则点 A'的坐标是_____.

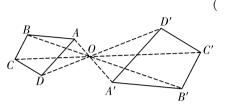
13. 如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影(圆形).已知灯泡距离地面2.4 m,桌面距离地面0.8 m(桌面厚度不计算),若桌面的面积是1.2 m,则地面上的阴影面积是 m.



第13题图

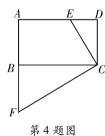

14. (2017 杭州) 如图, 在锐角三角形 ABC 中, 点 D, E 分别在边 AC, AB 上, $AG \perp BC$ 于点 G, $AF \perp DE$ 于点 F, $\angle EAF = \angle GAC$.

- (1)求证: $\triangle ADE \hookrightarrow \triangle ABC$;
- (2)若 AD = 3, AB = 5, 求 $\frac{AF}{AG}$ 的值.



- **15**. (2016 福州) 如图,在 $\triangle ABC$ 中,AB = AC = 1, $BC = \frac{\sqrt{5} 1}{2}$,在AC 边上截取AD = BC,连接BD.
 - (1) 通过计算, 判断 AD^2 与 $AC \cdot CD$ 的大小关系;
 - (2) 求∠*ABD* 的度数.

能力提升


1. (2017 成都) 如图,四边形 ABCD 和 A'B'C'D'是以点 O 为位似中心的位似图形,若 OA: OA' = 2:3,则四边形 ABCD 与四边形 A'B'C'D'的面积比为

)

第1题图

- B. 2:5 C. 2:3 D. $\sqrt{2}$: $\sqrt{3}$ **I潭**) 如图,在 $\triangle ABC$ 中, D, E 分别是边的中点,则 $\triangle ADE$ 与 $\triangle ABC$ 的面积比
- $S_{\triangle ADE}$: $S_{\triangle ABC} =$ _____. $A \qquad \qquad A \qquad \qquad D \qquad \qquad A \qquad \qquad D \qquad \qquad A \qquad \qquad D \qquad \qquad B \qquad \qquad E \qquad \qquad$
- 3. (2017 杭州) 如图,在 Rt $\triangle ABC$ 中, $\angle BAC$ = 90°, AB = 15,AC = 20,点 D 在边 AC 上,AD = 5, DE \bot BC 于点 E,连接 AE,则 $\triangle ABE$ 的面积等于
- **4.** 如图,在矩形 ABCD 中, E 为 AD 边上的一点, 过 C 点作 $CF \perp CE$ 交 AB 的延长线于点 F.
 - (1)求证: $\triangle CDE \hookrightarrow \triangle CBF$;
 - (2) 若 B 为 AF 的中点, CB = 3, DE = 1, 求 CD 的长.

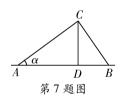
第 20 讲 解直角三角形及其应用

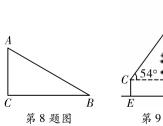
1. (2017 天津) cos60°的值等于

 $A = \sqrt{3}$

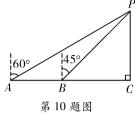
- B. 1
- C. $2\sqrt{2}$
- **2.** (2017 聊城) 在 Rt $\triangle ABC$ 中, $\cos A = \frac{1}{2}$, 那么 $\sin A$ 的值是

- B. $\frac{\sqrt{3}}{2}$ C. $\frac{\sqrt{3}}{3}$ D. $\frac{1}{2}$
- 3. 在 Rt $\triangle ABC$ 中, $\angle C = 90^{\circ}$, $\sin A = \frac{2}{3}$, 那么 $\tan B$ 的 值是

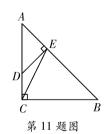

4. (2017 怀化)如图,在平面直角人 标系中,点A的坐标为(3,4),那么: sinα 的值是



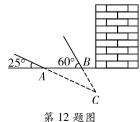
- 5. (2017 哈尔滨) 在 Rt △ABC 中, ∠C = 90°, AB = 4, AC = 1,则 $\cos B$ 的值为
- A. $\frac{\sqrt{15}}{4}$ B. $\frac{1}{4}$ C. $\frac{\sqrt{15}}{15}$
- **6**. (2017 **宜昌**) △*ABC* 在网格中的位置如图所示 $(每个小正方形边长为1), AD \perp BC 于 D, 下列选$ 项中,错误的是
 - A. $\sin \alpha = \cos \alpha$
- B. tan C = 2
- C. $\sin\beta = \cos\beta$
- D. $tan\alpha = 1$



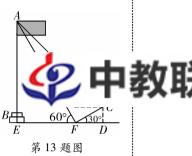
- 7. (2017 **益阳**) 如图,电线杆 CD 的高度为 h,两根拉 线 AC 与 BC 相互垂直, $\angle CAB = \alpha$, 则拉线 BC 的 长度为(A,D,B 在同一条直线上)
- B. $\frac{h}{\cos\alpha}$ C. $\frac{h}{\tan\alpha}$
- D. $h \cdot \cos \alpha$
- 8. (2017 广州) 如图, $Rt \triangle ABC$ 中, $\angle C = 90^{\circ}$, BC =15, $\tan A = \frac{15}{8}$, 则 $AB = _$

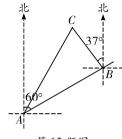

9. (2017 山西) 如图,创新小组要测量公园内一棵树 的高度 AB,其中一名小组成员站在距离树 10 米

- 的点 E 处,测得树顶 A 的仰角为 54° . 已知测角仪 的架高 $CE = 1.5 \, \text{米}$,则这棵树的高度为 米. (结果保留一位小数. 参考数据: sin54°≈ $0.809\ 0.\cos 54^{\circ} \approx 0.587\ 8.\tan 54^{\circ} \approx 1.376\ 4$
- 10. 一艘货轮由西向东航行, 在 A 处测得灯塔 P 在它 的北偏东 60°方向,继续 航行到达 B 处,测得灯塔 P在它的东北方向,若灯 A塔P正南方向4海里的

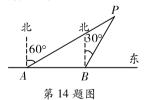


, 巷口,点A,B,C 在一条直线上,则这艘货 到 B 航行的路程为 묵).


- 11. (2016 上海) 如图,在 $Rt \triangle ABC$ 中, $\angle ACB = 90^{\circ}$, AC = BC = 3, 点 D 在边 AC 上, 且 AD = 2CD, DE $\bot AB$, 垂足为点 E, 连接 CE, 求:
 - (1)线段 BE 的长;
 - (2)∠*ECB* 的余切值.


12. (2016 自贡) 某国发生 8. 1级强烈地震, 我国积 极组织抢险队赴地震灾区参与抢险工作,如图, 某探测队在地面 A,B 两处均探测出建筑物下方 C 处有生命迹象,已知探测线与地面的夹角分别 是25°和60°,且AB=4米,求该生命迹象所在位 置C的深度.(结果精确到1米,参考数据: $\sin 25^{\circ} \approx 0.4$, $\cos 25^{\circ} \approx 0.9$, $\tan 25^{\circ} \approx 0.5$, $\sqrt{3} \approx$ 1.7).

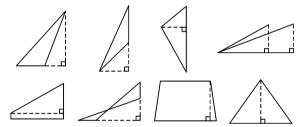
13. (2017 荆门) 金桥学校"科技体艺节"期间,八年级数学活动小组的任务是测量学校旗杆 AB 的高,他们在旗杆正前方台阶上的点 C 处,测得旗杆顶端 A 的仰角为 45° ,朝着旗杆的方向走到台阶下的点 F 处,测得旗杆顶端 A 的仰角为 60° ,已知升旗台的高度 BE 为 1 米,点 C 距地面的高度 CD 为 3 米,台阶 CF 的坡角为 30° ,且点 E,F,D 在同一条直线上,求旗杆 AB 的高度 (计算结果精确到 0.1 米,参考数据: $\sqrt{2} \approx 1.41$, $\sqrt{3} \approx 1.73$).



15. (2017 **乌鲁木齐**) 一艘渔船位于港口 A 的北偏东 60° 方向,距离港口 20 海里 B 处,它沿北偏西 37° 方向航行至 C 处突然出现故障,在 C 处等待 救援,B ,C 之间的距离为 10 海里,救援船从港口 A 出发 20 分钟到达 C 处,求救援艇的航行速度. ($\sin 37^{\circ} \approx 0.6$, $\cos 37^{\circ} \approx 0.8$, $\sqrt{3} \approx 1.732$, 结果取 整数).

第15题图

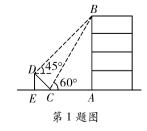
- 14. (2017 长沙) 为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时 50 海里的速度向正东方航行,在 A 处测得灯塔 P 在北偏东 60°方向上,继续航行 1 小时到达 B 处,此时测得灯塔 P 在北偏东 30°方向上.
 - (1)求 $\angle APB$ 的度数;
 - (2)已知在灯塔 P 的周围 25 海里内有暗礁,问海监船继续向正东方向航行是否安全?

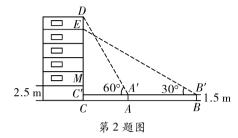

解题技巧训练强化三 解直角三角形的实际应用

【知识筹备】解直角三角形实际应用的相关知识如下:

- 1. 锐角三角函数的概念;
- 2. 特殊角三角函数值:
- 3. 仰俯角、坡度坡角、方向角概念.

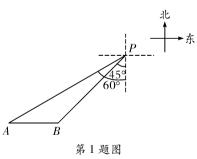
【方法技巧】解直角三角形实际应用方法如下:


- 1. 运用解直角三角形的方法解决实际问题的步骤:(1) 审题:根据题意作出正确的平面图或截面示意图,在图形中弄清已知量和未知量;(2) 将已知条件转化为示意图中的边、角关系,把实际问题转化为解直角三角形的问题(若三角形根据边角关系进行计算,若三角形形,可通过添加辅助线构造直角三角形,
- **2.** 解直角三角形的实际应用题常见图形类型及辅助线作法:

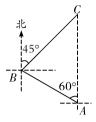

3. 对于解直角三角形的实际应用题,关键是要将题目中的信息转化为数学文字,并将所得信息转化为直角三角形中的边和角,注意抓住关键信息(含有数字信息的文字),利用解直角三角形的类型求解,并注意对结果要取近似值.

类型1 仰俯角

- 1. (2017 桂林二模) 如图,在大楼 AB 的正前方有一斜坡 CD,已知斜坡 CD 长为6 $\sqrt{2}$ 米,坡角 $\angle DCE$ 等于 45° ,小红在斜坡下的点 C 处测得楼顶 B 的仰角为 60° ,在斜坡上的顶点 D 处测得楼顶 B 的仰角为 45° ,其中点 A, C, E 在同一直线上.
 - (1) 求斜坡 CD 的高度 DE;
 - (2) 求大楼 AB 的高度(结果保留根号).

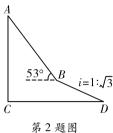


2. (2017 潍坊) 如图,某数学兴趣小组要测量一栋五层居民楼 CD 的高度. 该楼底层为车库,高 2.5米;上面五层居住,每层高度相等. 测角仪支架离地 1.5米,在 A 处测得五楼顶部点 D 的仰角为 60° ,在 B 处测得四楼顶部点 E 的仰角为 30° , AB = 14米. 求居民楼的高度(精确到 0.1 米,参考数据: $\sqrt{3} \approx 1.73$).

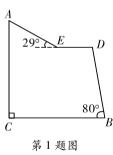


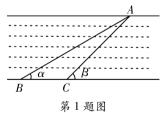
类型2 方向角

1. (2017 天水) 一艘轮船位于灯塔 P 南偏西 60°方向的 A 处,它向东航行 20 海里到达灯塔 P 南偏西 45°方向上的 B 处,若轮船继续沿正东方向航行,求轮船航行途中与灯塔 P 的最短距离. (结果保留根号)

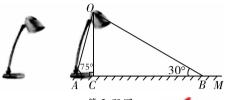


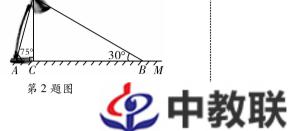
2. (2017 成都)科技改变生活,手机导航极大方便了 人们的出行,如图,小明一家自驾到古镇 C 游玩, 到达 A 地后,导航显示车辆应沿北偏西 60°方向 行驶 4 千米至 B 地, 再沿北偏东 45°方向行驶一 段距离到达古镇 C,小明发现古镇 C 恰好在 A 地 的正北方向,求B,C两地的距离.


- 2. (2016 泸州) 如图, 为了测量出楼房 AC 的高度, 从距离楼底 C 处 $60\sqrt{3}$ 米的点 D(点 D 与楼底 C在同一水平面上)出发,沿斜面坡度为 $i=1:\sqrt{3}$ 的 斜坡 DB 前进 30 米到达点 B, 在点 B 处测得楼顶 A的仰角为53°,求楼房AC的高度(参考数据: 用根号表示,不取近似值).


类型3 坡度、坡角

1. (2016 贵阳)"蘑菇石"是我国著名的自然保护区 梵净山的标志,小明从山脚 B 点先乘坐缆车到达 观景平台 DE 观景,然后再沿着坡角为 29°的斜坡 由 E 点步行到达"蘑菇石" A 点,"蘑菇石" A 点到 水平面 BC 的垂直距离为 1 890 m. 如图, DE // BC, BD = 1800 m, $\angle DBC = 80^{\circ}$, 求斜坡 AE 的长 度. (结果精确到 0.1 m, 可参考数据: sin29°≈ $0.484.8 \, \sin 80^{\circ} \approx 0.984.8 \, \cos 29^{\circ} \approx 0.874.6$ $\cos 80^{\circ} \approx 0.1736$




类型4 其他类型

1. (2017 宜宾) 如图,为了测量某条河的宽度,现在 河边的一岸边任意取一点 A,又在河的另一岸边 取两点 B, C 测得 $\angle \alpha = 30^{\circ}, \angle \beta = 45^{\circ},$ 量得 BC 长 为100米. 求河的宽度(结果保留根号).

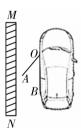
2. (2016 邵阳) 如图为放置在水平桌面上的台灯的 平面示意图,灯臂 AO 长为 40 cm,与水平面所形 成的夹角 $\angle OAM$ 为 75°. 由光源 O 射出的边缘光 线 OC,OB 与水平面所形成的夹角 $\angle OCA, \angle OBA$ 分别为90°和30°, 求该台灯照亮水平面的宽度 BC(不考虑其他因素,结果精确到0.1 cm. 温馨提 $\vec{\pi}$: sin75°≈0.97, cos75°≈0.26, $\sqrt{3}$ ≈1.73).

4. (2016 天津) 小明上学途中要经过 A, B 两地, 由

干A.B 两地之间有一片草坪, 所以需要走路线

AC, CB. 如图, 在 $\triangle ABC$ 中, AB = 63 m, $\angle A = 45^{\circ}$,

 $\angle B = 37^{\circ}$,求AC,CB的长.(结果保留小数点后一


位) (参考数据: $\sin 37^{\circ} \approx 0.60$, $\cos 37^{\circ} \approx 0.80$,

草坪

第4题图

 $\tan 37^{\circ} \approx 0.75, \sqrt{2} \text{ ps } 1.414)$

3. (2017 台州) 如图是一辆小汽车与墙平行停放的 平面示意图,汽车靠墙一侧 OB 与墙 MN 平行且 距离为 0.8 米. 已知小汽车车门宽 AO 为1.2米, 当车门打开角度∠AOB 为 40°时,车门是否会碰 到墙?请说明理由. (参考数据: sin40°≈0.64, $\cos 40^{\circ} \approx 0.77 , \tan 40^{\circ} \approx 0.84)$

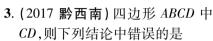
第3题图

第五章 四边形

第21 讲 多边形与平行四边形

基础巩固

1. (2017 临沂) 一个多边形的内角和是外角和的 2 倍,则这个多边形是


A. 四边形 B. 五边形 C. 六边形 D. 八边形

2. (2017 莱芜) 一个多边形的内角和比其外角和的 2 倍多 180°.则该多边形的对角线的条数是

A. 12

B. 13

C. 14

A. $\angle A = \angle C$

B.AD//BC

C. $\angle A = \angle B$

D. 对角线互相平分

4. 小敏不慎将一块平行四边 形玻璃打碎成如图的四 块,为了能在商店配到一 块与原来相同的平行四边 形玻璃,他带了两块碎玻

)

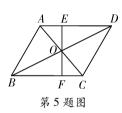
璃,其编号应该是

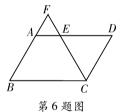
A. (1)(2)

C. (3)(4)

D. (2)(3)

5. (2017 眉山) 如图, EF 过□ABCD 对角线的交点 O,交 AD 于 E,交 BC 于 F, 若 $\Box ABCD$ 的周长为 18.0E = 1.5.则四边形 *EFCD* 的周长为 (


A. 14


B. 13

B. (1)(4)

C. 12

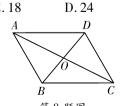
D. 10

6. 如图,在 $\Box ABCD$ 中,AB=6,BC=8, $\angle C$ 的平分线 交 AD 于 E, 交 BA 的延长线于 F, 则 AE + AF 的值 等于

A. 2

B. 3

C. 4


D. 6

7. (2017 广州) 如图, E, F 分别是 $\square ABCD$ 的边 AD, BC 上的点, EF = 6, $\angle DEF = 60^{\circ}$, 将四边形 EFCD沿 EF 翻折,得到 EFC'D', ED' 交 BC 于点 G,则 $\triangle GEF$ 的周长为

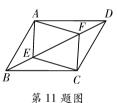
A. 6

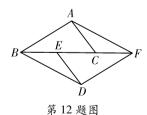
B. 12

C. 18

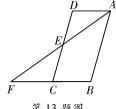
8. (2016 **邵阳**) 如图所示,四边形 *ABCD* 的对角线相

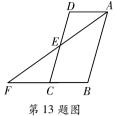
交于点 O, 若 AB // CD, 请添加一个条件 (写一个即可), 使四边形 ABCD 是平行四 边形.


9. (2017 武汉) 如图,在 $\Box ABCD$ 中, ∠D = 100°, $\angle DAB$ 的平分线 AE 交 DC 于点 E, 连接 BE. 若 AE = AB,则 $\angle EBC$ 的度数为

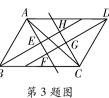

7,9题图

第10题图

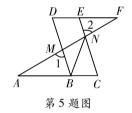

- 10. (2017 南充)如图,在□ABCD中,过对角线 BD 上一点 P 作 EF // BC, GH // AB, 且 CG = 2BG, $S_{\land RPG} = 1$,则 $S_{\Box AEPH} =$.
- 11. (2017 乌鲁木齐) 如图, 四边形 ABCD 是平行四 边形,E,F 是对角线 BD 上的两点,且 BF = ED, 求证:AE//CF.

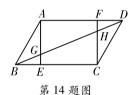


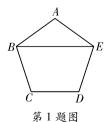
- **12**. (2017 **咸宁**) 如图,点 B, E, C, F 在一条直线上, AB = DF, AC = DE, BE = FC.
 - (1)求证: $\triangle ABC \cong \triangle DFE$;
 - (2) 连接 AF, BD, 求证: 四边形 ABDF 是平行四 边形.

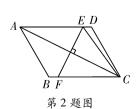


- **13**. (2017 湘潭)如图,在□ABCD中,DE = CE,连接 AE 并延长交 BC 的延长线于点 F.
 - (1) 求证: $\triangle ADE \cong \triangle FCE$;
 - (2) 若 AB = 2BC, $\angle F = 36^{\circ}$. 求 $\angle B$ 的度数.


- 直平分线分别交 AD,BC 于点 E,F,连接 CE,若 $\triangle CED$ 的周长为 6,则 $\square ABCD$ 的周长为 (B. 12 C. 18 D. 24 A. 6
- 3. (2017 常州)如图,已知 □ABCD 的四个内角的平分 线分别相交于点 E, F, G, H, 连接 AC. 若 EF = 2, FG = GC=5,则 AC 的长是 (


- B. 13 A. 12
- C. $6\sqrt{5}$
- D. $8\sqrt{3}$
- **4.** (2017 通辽) 在 □ ABCD 中, AE 平分 ∠ BAD 交边 BC + E, DF 平分 $\angle ADC$ 交边 BC + F, $\stackrel{?}{=} AD =$ 11.EF = 5,则 AB = .


- **工** (\mathbf{I}) 如图,点 B,E 分别在 AC,DF 上,AF3D, CE 于点 M, N, $\angle A = \angle F$, $\angle 1 = \angle 2$.
 - (1) 求证:四边形 BCED 是平行四边形;
 - (2)已知 DE = 2,连接 BN,若 BN 平分 $\angle DBC$,求 CN 的长.



- 14. (2017 攀枝花) 如图, 在平行四边形 ABCD 中, $AE \perp BC$, $CF \perp AD$, 垂足分别为 E, F, AE, CF 分 别与 BD 交于点 G 和 H,且 $AB = 2\sqrt{5}$.
 - (1)若 $\tan \angle ABE = 2$,求 CF 的长;
 - (2)求证:BG = DH.

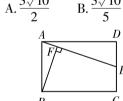
- 1. (2017 苏州) 如图, 在正五边形 ABCDE 中, 连接 BE,则∠ABE 的度数为
 - A. 30°
- B. 36°
- $C.54^{\circ}$
- D. 72°

2. (2017 贵阳) 如图,在□ABCD 中,对角线 AC 的垂

第 22 讲 矩形与菱形

础巩固

- 1. (2017 益阳)下列性质中菱形不一定具有的性质 是
 - A. 对角线互相平分
 - B. 对角线互相垂直
 - C. 对角线相等
 - D. 既是轴对称图形又是中心对称图形
- 2. (2017 葫芦岛) 如图,将矩形纸 片 ABCD 沿直线 EF 折叠, 使点 C 落在 AD 边的中点 C' 处,点 B落在点 B'处,其中 AB = 9, BC =

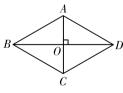

6.则 FC'的长为

第2题图

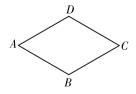
A. $\frac{10}{3}$

B. 4 C. 4. 5 D. 5

- 3. (2017 上海)已知平行四边形 ABCD, AC, BD 是它 的两条对角线,那么下列条件中,能判断这个平行 四边形为矩形的是
 - A. $\angle BAC = \angle DCA$
- B. $\angle BAC = \angle DAC$
- C. $\angle BAC = \angle ABD$
- D. $\angle BAC = \angle ADB$
- 4. (2017 **陕西**) 如图,在矩形 *ABCD* 中, *AB* = 2, *BC* = 3. 若点 E 是边 CD 的中点,连接 AE,过点 B 作 BF $\bot AE$ 交 AE 于点 F,则 BF 的长为

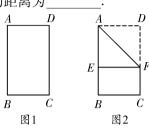


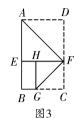
第4题图



第5题图

- 5. (2017 辽阳) 如图, 在矩形 ABCD 中, ∠ABC 的平 分线交 AD 于点 E,连接 CE. 若 BC = 7, AE = 4,则 CE =
- 6. 如图,四边形 ABCD 是对角线互相垂直的四边形, 且 OB = OD,请你添加一个适当的条件 使四边形 ABCD 是菱形. (只需添加一个即可)

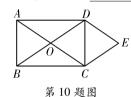

第6题图



第7题图

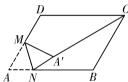
- 7. (2017 乌鲁木齐) 如图, 在菱形 ABCD 中, ∠DAB $=60^{\circ}$, AB=2, 则菱形 ABCD 的面积为
- 8. (2017 广东)如图,矩形纸片 ABCD 中,AB = 5,BC =3,先按图 2 操作:将矩形纸片 ABCD 沿过点 A

的直线折叠, 使点 D 落在边 AB 上的点 E 处, 折痕 为AF:再按图3操作,沿过点F的直线折叠,使点 C 落在 EF 上的点 H 处, 折痕为 FG, 则 A, H 两点 间的距离为

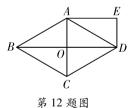


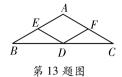
第8题图

林模拟)如图,在矩形 ABCD 中,对角线 目交于点 O,点 E, F 分别是 AO, AD 的中


点,若AB = 6 cm,BC = 8 cm,则EF =

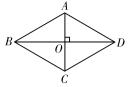
第9题图


- 10. (2017 钦州模拟) 如图所示,矩形 ABCD 的两条 对角线相交于点 O,AD=8,AB=6, 将 $\triangle ABO$ 向 右平移得到 $\triangle DCE$,则 $\triangle ABO$ 向右平移过程扫过
 - 的面积是
- 11. (2017 桂林一模) 如图,在 边长为 4 的菱形 ABCD 中, $\angle A = 60^{\circ}$, M 是 AD 边 的中点,点 $N \neq AB$ 边上 \hat{A}


一动点,将 $\triangle AMN$ 沿MN

第11题图 所在的直线翻折得到 $\triangle A'MN$, 连接 A'C, 则线段 A'C 长度的最小值是

12. 如图,菱形 ABCD 的对角线 AC, BD 相交于点 O, 且 DE // AC, AE // BD. 求证: 四边形 AODE 是 矩形.

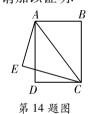


- **13**. 如图,已知 $\triangle ABC$ 中,AB = AC,E,D,F分别是边 AB,BC,AC 的中点.
 - (1) 求证: 四边形 AEDF 是菱形:
 - (2) 若 $\angle B = 30^{\circ}$, $BC = 4\sqrt{3}$, 求四边形 AEDF 的 周长.

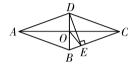
交于点 0.

求证: $AC \perp BD$. 以下是排乱 的证明过程:

- ②: $AO \perp BD$, $\mathbb{P} AC \perp BD$;
- 第2题图
- ③:: 四边形 ABCD 是菱形:
- ④∴ *AB* = *AD*. 证明步骤正确的顺序是)
- $A. (3) \rightarrow (2) \rightarrow (1) \rightarrow (4)$
- B. $(3) \rightarrow (4) \rightarrow (1) \rightarrow (2)$
- $C. (1) \rightarrow (2) \rightarrow (4) \rightarrow (3)$
- $D. (1) \rightarrow (4) \rightarrow (3) \rightarrow (2)$
- 3. (2017 泸州) 如图, 在矩形 ABCD 中, 点 E 是边 BC 的中点, $AE \perp BD$,垂足为 F,则 $tan \angle BDE$ 的值是

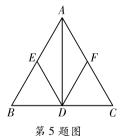


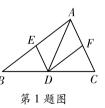
)


- **14**. (2017 日照)如图,已知 BA = AE = DC, AD = EC,
 - (1)求证: $\triangle DCA \cong \triangle EAC$;

 $CE \perp AE$, 垂足为 E.

(2)只需添加一个条件,即 (答案不 唯一),可使四边形 ABCD 为矩形. 请加以证明.

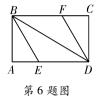



第4题图

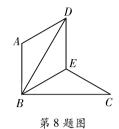
- 4. (2017 十堰) 如图,菱形 ABCD 中,AC 交 BD 于点 $O,DE \perp BC$ 于点 E,连接 OE,若 $\angle ABC = 140^{\circ}$,则 $\angle OED =$.
- 5. (2017 云南) 如图, △ABC 是以 BC 为底的等腰三 角形,AD 是边 BC 上的高,点 E,F 分别是 AB,AC的中点.
 - (1) 求证: 四边形 AEDF 是菱形;
 - (2) 如果四边形 AEDF 的周长为 12, 两条对角线 的和等于7,求四边形 AEDF 的面积 S.

能力提升

1. (2017 临沂) 在 △ABC 中, 点 D 是边 BC 上的点(与 B,C 两点 不重合),过点 D 作 DE //AC, DF//AB,分别交 AB,AC 于 E,F B两点,下列说法正确的是

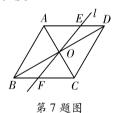


- A. 若 $AD \perp BC$,则四边形 AEDF 是矩形
- B. 若 AD 垂直平分 BC,则四边形 AEDF 是矩形


(

- C. 若 BD = CD,则四边形 AEDF 是菱形
- D. 若 AD 平分∠BAC,则四边形 AEDF 是菱形
- 2. (2017 河北) 求证: 菱形的两条对角线互相垂直. 已知:如图,四边形 ABCD 是菱形,对角线 AC,BD

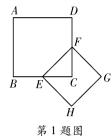
- **6**. (2017 盐城) 如图,矩形 ABCD 中,∠ABD,∠CDB ↓ **8**. (2017 盐城) 如图,△BAD 是由△BEC 在平面内 的平分线 BE, DF 分别交边 AD, BC 于点 E, F.
 - (1) 求证:四边形 BEDF 是平行四边形;
 - (2)当∠ABE 为多少度时,四边形 BEDF 是菱形? 请说明理由.

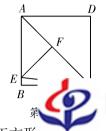


- 绕点 B 旋转 60° 而得,且 $AB \perp BC$. BE = CE,连 接 DE.
 - (1)求证: $\triangle BDE \cong \triangle BCE$;
 - (2) 求证: 四边形 ABED 为菱形;
 - (3)若 BE = 6,求菱形 ABED 的面积.

- 7. 如图,在菱形 ABCD 中,AB = 2,∠ABC = 60°,对角 线 AC, BD 相交于点 O, 将对角线 AC 所在的直线 绕点 O 顺时针旋转 $\alpha(0^{\circ} < \alpha < 90^{\circ})$ 后得直线 l, 直线 l 与 AD,BC 两边分别相交于点 E 和点 F.
 - (1)求证: $\triangle AOE \cong \triangle COF$;
 - (2)当 $\alpha = 30$ °时,求线段 EF 的长度.

第23 讲 正方形及特殊四边形的综合


1. 如图, 正方形 ABCD 的面积为1.则以相邻两边中 点连接 EF 为边的正方形 EFGH 的周长为(


 $A.\sqrt{2}$

C. $\sqrt{2} + 1$

D. $2\sqrt{2} + 1$

2. (2017 钦州一模) 如图, 在正方形 ADUD 对角线,点 E 在 AB 边上, $EF \perp AC$ 干点 F, 连接 $EC.AF = 3. \triangle EFC$ 的周长为 12.则 EC 的长为

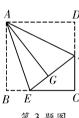
)

A. $\frac{7\sqrt{2}}{2}$

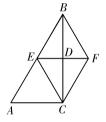
B. $3\sqrt{2}$

C. 5

D. 6


3. (2017 **南宁模拟**) 如图,正方形纸片 ABCD 的边长 为 3,点 E,F 分别在边 BC,CD 上,将 AB,AD 分别 沿AE,AF 折叠,点B,D 恰好都落在点G 处,已知 BE = 1,则 EF 的长为

A. 1. 5

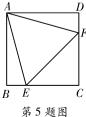

B. 2. 5

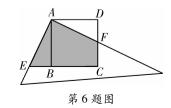
C. 2. 25

D. 3

第3题图

4. (2018 原创)如图,在 Rt △ABC 中,∠ACB = 90°, BC 的垂直平分线 EF 交 BC 于点 D, 交 AB 于点 E,且 BE = BF. 添加一个条件,仍不能证明四边形 BECF 为正方形的是

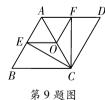

A. BC = AC


B. $CF \perp BF$

C. BD = DF

- D.AC = BF
- 5. (2017 六盘水) 如图, 在正方形 ABCD 中, 等边三 角形 AEF 的顶点 E,F 分别在边 BC 和 CD 上,则

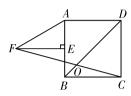
 $\angle AEB =$ 度.

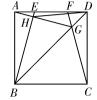

- 6. (2018 原创)如图,正方形 ABCD 的边长为4,将一 个足够大的直角三角板的直角顶点放于点 A 处, 该三角板的两条直角边与 CD 交于点 F,与 CB 的 延长线交干点 E. 四边形 AECF 的面积是
- 7. (2017 兰州) 在平行四边形 ABCD 中, 对角线 AC 与 BD 相交于点 O,要使四边形 ABCD 是正方形, 还需添加一组条件. 下面给出了四组条件: $\bigcirc AB \perp AD$, $\exists AB = AD$; $\bigcirc AB = BD$, $\exists AB \perp BD$; $\textcircled{3}OB = OC, \coprod OB \perp OC; \textcircled{4}AB = AD, \coprod AC = BD,$ 其中正确的序号是
- \blacksquare 知在矩形 ABCD 中, E 是 BC 边上一点, **▶** . ∠ADC, EF // DC 交 AD 边于点 F, 连

按 Ďυ.

- (1) 求证:四边形 FECD 是正方形;
- (2) 若 BE = 1, $ED = 2\sqrt{2}$, 求 $tan \angle DBC$ 的值.

- 9. (2017 青岛)已知:如图,在菱形 ABCD 中,点 E, O,F 分别为 AB,AC,AD 的中点,连接 CE,CF,OE, OF.
 - (1)求证: $\triangle BCE \cong \triangle DCF$;
 - (2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.

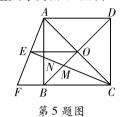



能力提升

1. (2017 黔东南州) 如图,正方形 ABCD 中, E 为 AB 中点, $FE \perp AB$, AF = 2AE, FC 交 BD 于 O,则 $\angle DOC$ 的度数为

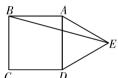
A. 60°

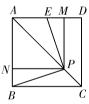
- $\mathrm{B.\,67.\,5}^{\circ}$
- C. 75°
- D. 54°



第1题图

第2题图


- **5**. (2016 **济宁**) 如图,正方形 ABCD 的对角线 AC,BD 相交于点 O,延长 CB 至点 F,使 CF = CA,连接 AF, $\angle ACF$ 的平分线分别交 AF, AB, BD 于点 E, N, M, 连接 EO.
 - (1)已知 $EO = \sqrt{2}$,求正方形 ABCD 的边长.
 - (2) 猜想线段 EM 与 CN 的数量关系并加以证明.


- 2. (2017 **龙东地区**) 在边长为 4 的 3 *E*, *F* 是 *AD* 边上的两个动点, 且
 - $BE, F \in AD$ 边上的两个动点,且 BE, CF, BD, CF = BD 交于点 G, 连接 $AG \not\subset BE$ 于点 H, 连接 DH, 下列结论正确的个数是() ① $\triangle ABG \hookrightarrow \triangle FDG$, ②HD 平分 $\triangle EHG$; ③ $AG \perp BE$; ④ $S_{\triangle ABG} : S_{\triangle ABG} = \tan \triangle DAG$; ⑤线段 DH 的最小值是 $2\sqrt{5}$ 2.

A. 2

- B. 3
- C. 4
- D. 5
- 3. (2017 黄冈) 如图, 在正方形 B ABCD 的外侧, 作等边 $\triangle ADE$, 则 $\angle BED$ 的度数是_____.

- - (1) 求证:四边形 PMAN 是正方形;
 - (2) 求证:*EM* = *BN*.

第4题图

解题技巧训练强化四 四边形中相关证明或计算

【知识筹备】四边形中相关证明或计算的相关知识如下:

- 1. 全等三角形的判定与性质;
- 2. 特殊四边形的判定与性质.

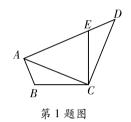
【方法技巧】四边形中相关证明或计算方法如下:

1. 全等三角形的判定方法

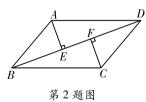
已知两条件,利用三角形全等时,主要从三个方面寻求突破:(1)当已知两边时,可找夹角(SAS),或找直角(HL或SAS),或找另一边(SSS);(2)当已知一边和一角时,①若边为角的对:(AAS);②若边为角的邻边,则(SAS),或找夹边的另一角(ASA),或找任一边(AAS);(3)当已知两角时,找夹边(ASA),或找任一边(AAS).

2. 特殊四边形的判定与性质

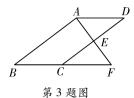
- (1)矩形判定的一般思路:首先判定是否为平行四边形,然后找角或者对角线的关系,若角度容易求,则可找一角为90°,便可判定是矩形;若对角线容易求,则证明其对角线相等即可得到其为矩形.
- (2)运用矩形性质计算的一般思路:矩形因为有直角,所以常借助于勾股定理知识,又因其对角线相等且互相平分,故也可借助于对角线的关系应用到全等判定.
- (3)要判定一个四边形是菱形,基本思路有三种:①根据定义,证明四条边相等的四边形是菱形;②先证四边形是平行四边形,再证这个四边形的邻边相等或对角线互相垂直即可求证;③证明四边形的对角线互相垂直平分.注意与矩形的判定方法的区别,证明过程要有理有据,可借助三角形全等,要灵活应用题设条件是快速解题的关键.
 - (4)菱形的计算主要有下面三种设问方式:
- ①求角度时,应注意菱形的四条边相等和对角相等、邻角互补等,可利用等腰三角形的性质和平行线的相关性质,转化要求的角,直到找到已知角存在的关系;
- ②求长度(线段长或者周长)时,应注意使用等腰三角形的性质;若菱形中存在一个顶角为 60°,则连接另外两点的对角线所分割的两个三角形为等边三角形,故在计算时,可借助等边三角形的性质进行求解;若菱形中存在直角三角形,则应注意使用勾股定理、直角三角形斜边上的中线等于斜边的一半、含特殊角的直角三角形等进行计算;

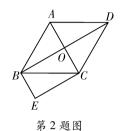

③求面积时,可利用菱形的两条对角线互相垂直,面积等于对角线之积的一半.

对于正方形的相关计算问题,应注意合理应用其性质及由性质得到的一些结论:

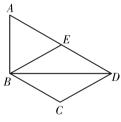

- a. 四边相等,四个角均为90°;
- b. 对角线互相垂直且相等;
- c. 对角线平分一组对角得到 45°角;
- d. 边长与对角线的比为 1:√2.

类型 1 四边形中全等三角形的判定与性质


| 州节选) 如图,已知在四边形 ABCD 中, AD 上, $\angle BCE = \angle ACD = 90^{\circ}$, $\angle BAC = \angle D$, DC = CE. 求证:AC = CD.


2. (2017 **淮安**) 已知:如图,在平行四边形 ABCD 中, $AE \perp BD$, $CF \perp BD$, 垂足分别为 E, F. 求证: $\triangle ADE$ $\hookrightarrow \triangle CBF$.

- 3. (2016 **温州**) 如图, *E* 是□ABCD 的边 CD 的中点, **2**. (2016 云南) 如图, 菱形 ABCD 的对角线 AC 与 BD 延长 AE 交 BC 的延长线于点 F.
 - (1)求证: $\triangle ADE \cong \triangle FCE$;
 - (2) 若 $\angle BAF = 90^{\circ}$, BC = 5, EF = 3, 求 CD 的长.


- 交于点 O, $\angle ABC$: $\angle BAD = 1:2$, BE //AC, CE $/\!/BD$.
 - (1)求 tan∠DBC 的值;
 - (2) 求证:四边形 OBEC 是矩形.

类型 2 特殊四边形的判定及相关计算

- 1. (2017 北京)如图,在四边形 ABCD 中,BD 为一条 对角线,AD//BC,AD=2BC,∠ABD=90°,E 为 AD 的中点,连接 BE.
 - (1)求证:四边形 BCDE 为菱形;
 - (2)连接 AC, 若 AC 平分 ∠BAD, BC = 1, 求 AC 的长.

第1题图

- 3. (2017 西宁)如图,四边形ABCD中,AC,BD 相交于点 O,O 是 AC 的中点,AD//BC,AC=8,BD=6.
 - (1)求证:四边形 ABCD 是平行四边形;
 - (2) 若 $AC \perp BD$, 求 $\Box ABCD$ 的面积.

第六章 圆

第24讲 圆及其相关性质

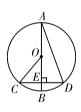
础巩固

1. (2017 兰州) 如图,在 $\odot O$ 中, $\widehat{AB} = \widehat{BC}$,点 D 在 $\bigcirc O$ 上, $\angle CDB = 25^{\circ}$, 则 $\angle AOB =$

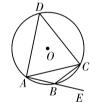
A. 45°

- B. 50°
- C. 55°
- D. 60°

第1题图



第2题图


2. (2017 徐州) 如图, 点 A, B, C 在 $\bigcirc O$ 上, $\angle AOB =$ 72°,则∠ACB 等于

A. 28°

- B. 54°
- C. 18°
- D. 36°
- 3. (2017 广州) 如图,在 $\odot O$ 中, AB 是直径, CD 是 \dot{x} , $AB \perp CD$, 垂足为 E, 连接 CO, AD, $\angle BAD$ = 20°,则下列说法中正确的是
 - A. AD = 20B
- B. CE = EO
- C. $\angle OCE = 40^{\circ}$
- D. $\angle BOC = 2 \angle BAD$

第3题图

第4题图

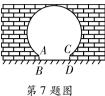
4. (2017 广东) 如图, 四边形 ABCD 内接于⊙0, DA =DC, $\angle CBE = 50^{\circ}$, 则 $\angle DAC$ 的大小为 (


A. 130°

- B. 100°
- C. 65°
- 5. 如图,把首角三角板的首角顶点 O 放在破损玻璃 镜的圆周上,两直角边与圆弧分别交于点M,N, 量得 OM = 8 cm, ON = 6 cm, 则该圆玻璃镜的半径 是 (

- A. $\sqrt{10}$ cm B. 5 cm
- C. 6 cm
- D. 10 cm

第5题图



第6题图

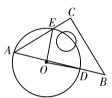
6. 如图,MN 是 $\odot 0$ 的直径,MN = 8, $\angle AMN = 40^{\circ}$, 点 B 为弧 AN 的中点,点 P 是直径 MN 上的一个动 点,则PA + PB的最小值为

 $A.\sqrt{3}$

- B. $2\sqrt{3}$
- C. $3\sqrt{3}$
- D. 4 $\sqrt{3}$
- 7. (2017 乐山) 如图是"明清影视 巨 城"的一扇圆弧形门,小红到 影视城游玩,他了解到这扇门 另 的相关数据:这扇圆弧形门所 在的圆与水平地面是相切的,

■ = 0. 25 米, BD = 1. 5 米, 且 AB, CD 与水 『是垂直的. 根据以上数据,请你帮小红计

开山岭湖圆弧形门的最高点离地面的距离是

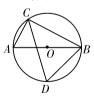

)

A.2 米

B. 2. 5 米 C. 2. 4 米

D. 2. 1 米

8. (2017 绍兴) 如图, 一块含 45°角的百角三角板, 它的一个锐角顶点 A 在 \bigcirc O 上, 边 AB, AC 分别与 $\bigcirc O$ 交于点 D,E,则∠DOE 的度数为



第8题图

第9题图

- **9**. (2017 **随州**) 如图,已知 AB 是 $\odot O$ 的弦,半径 OC垂直 AB, 点 D 是 $\odot O$ 上一点, 且点 D 与点 C 位于 弦 AB 两侧,连接 AD, CD, OB, 若 \angle BOC = 70°,则 $\angle ADC =$ 度.
- **10**. (2017 十堰) 如图, $\triangle ABC$ 内接于 $\bigcirc O$, $\angle ACB =$ 90°, ∠ACB 的角平分线交 \odot 0 于 D. 若 AC = 6, $BD = 5\sqrt{2}$,则 BC 的长为

第10题图

第11 题图

- **11**. 如图, ⊙0 是△ABC 的外接圆, ∠AOB = 60°, AB =AC=2,则弦BC=
- **12**. 如图,已知⊙0 的半径为 6 cm,弦 AB 的长为8 cm, P 是 AB 延长线 上一点,BP = 2 cm,则tan $\angle OPA$ 的 值是

第12 题图

- **13**. 如图,四边形 ABCD 是 $\odot O$ 的内接四边形,BC 的 延长线与 AD 的延长线交于点 E ,若 AB = BE.
 - (1)求证:DC = DE;
 - (2) 连接 OE, 交 CD 于点 F, $OE \perp CD$, 求 $\cos \angle OEB$.

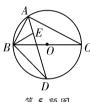
第13 题图

2. (2017 **陕西**) 如图, △ABC 是⊙0 _C 的内接三角形, $\angle C = 30^{\circ}$, $\odot O$ 的 半径为 5, 若点 P 是 $\odot O$ 上的一 点,在 $\triangle ABP$ 中, PB = AB,则 PA的长为)

A. 5

B. $\frac{5\sqrt{3}}{2}$ C. $5\sqrt{2}$

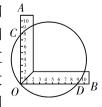
- **3**. 如图,已知 AC 是⊙O 的直径,点 B 在圆周上(不 与A,C重合),点D在AC的延长线上,连接BD交 \odot 0 于点 E, 若∠AOB = 3∠ADB, 则 (
 - A. DE = EB
- B. $\sqrt{2}DE = EB$
- $C. \sqrt{3}DE = DO$
- D. DE = OB



第3题图

第4题图

- **4.** 如图, \bigcirc 0 的半径 0D ⊥ 弦 AB 于点 C, 连接 AO 并 延长交 \odot 0 于点 E,连接 EC. 若 AB = 8, CD = 2,则 $\sin \angle ECB =$
- 5. (2017 临沂) 如图, $\angle BAC$ 的平分线交 $\triangle ABC$ 的外 接圆于点 D, $\angle ABC$ 的平分线交 AD 于点 E,
 - (1)求证:DE = DB;
 - (2)若 $\angle BAC = 90^{\circ}$, BD = 4, 求 $\triangle ABC$ 外接圆的 半径.


第5题图

- 14. (2016 宁夏)已知 $\triangle ABC$,以AB为直径的 $\bigcirc O$ 分 别交 AC 于 D, BC 于 E, 连接 ED, 若 ED = EC.
 - (1)求证:AB = AC;
 - (2) 若 AB = 4, $BC = 2\sqrt{3}$, 求 CD 的长.

第14题图

1. 在数学实践活动课中,小辉利用 自己制作的一把"直角角尺"测 (量、计算一些圆的直径,如图为直 角角尺, $\angle AOB = 90^{\circ}$, 将点 O 放 在圆周上,分别确定 OA,OB 与圆 的交点 C, D, 读得数据 OC = 8,

第1题图

OD = 9,则此圆的直径约为

A. 17

B. 14


C. 12

D. 10

第25 讲 与圆有关的位置关系

基础巩固

1. (2017 枣庄) 如图, 在网格(每 个小正方形的边长均为1)中 选取9个格点(格线的交点称 为格点),如果以A为圆心,r为半径画圆,选取的格点中除 点 A 外恰好有 3 个在圆内,则 r的取值范围为

A. $2\sqrt{2} < r < \sqrt{17}$

B. $\sqrt{17}$ <

D. 5 < r < 1

- **2.** $\neq Rt \triangle ABC \Rightarrow \angle C = 90^{\circ}, BC = 3 \text{ cm}, AC = 4 \text{ cm},$ 以点 C 为圆心,以 2.5 cm 为半径画圆,则 $\odot C$ 与 直线 AB 的位置关系是 (

A. 相交 B. 相切

C. 相离

D. 不能确定

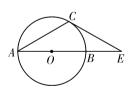
3. (2017 **莱芜**) 如图, $AB \in O$ 的直 C径,直线 DA 与 $\odot O$ 相切于点 A, DO 交 $\odot O$ 于点 C, 连接 BC, 若 $\angle ABC = 21^{\circ}$,则 $\angle ADC$ 的度数为

第3题图

A. 46°

B. 47°

()

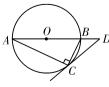

C. 48°

D. 49°

4. 如图,AB 是 $\odot O$ 的直径,C 是 $\odot O$ 上的点,过点 C作 \odot 0 的切线交 AB 的延长线于点 E, 若∠A = 30°,则 sinE 的值为

A. $\frac{1}{2}$ B. $\frac{\sqrt{2}}{2}$

- C. $\frac{\sqrt{3}}{2}$
- D. $\frac{\sqrt{3}}{3}$

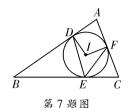


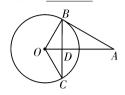
第4题图

第5题图

5. (2017 泰安) 如图, 圆内接四边形 ABCD 的边 AB 过圆心 O,过点 C 的切线与边 AD 所在直线垂直 于点 M, 若 $\angle ABC = 55^{\circ}$, 则 $\angle ACD$ 等于 A. 20° B. 35°

- C. 40°
- D. 55°
- **6**. 如图,圆 O 是 Rt △ABC 的外接 圆, $\angle ACB = 90^{\circ}$, $\angle A = 25^{\circ}$, 过 点 C 作圆 O 的切线, 交 AB 的 延长线于点 D,则 $\angle D$ 的度数 是

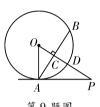


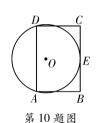

第6题图

A. 25°

- B. 40°
- C. 50°
- D. 65°

7. 圆 I 是三角形 ABC 的内切圆 D, E, F 为 3 个切点, $若 \angle DEF = 52^{\circ}, 则 \angle A$ 的度数为

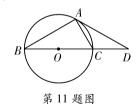



第8题图

8. (2017 **徐州**) 如图 AB = 0 相切于点 B, 线段 OA与弦 BC 垂直,垂足为 D,AB=BC=2,则 $\angle AOB=$

> 与 $\odot O$ 相切于点 A, 弦 AB \bot OP, 垂足为 $\bigcirc O$ 相交于点 D, 已知 OA = 2, OP = 4, 则

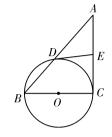
弦 AB 的长为



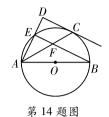
第9题图

10. 如图, 在矩形 *ABCD* 中, *AB* = 8, *AD* = 12, 过 *A*, *D* 两点的 $\odot O$ 与 BC 边相切于点 E,则 $\odot O$ 的半径

- 11. (2017 怀化)如图,已知 BC 是⊙O 的直径,点 D 为 BC 延长线上的一点,点 A 为圆上一点,且 AB=AD, AC = CD.
 - (1) 求证: $\triangle ACD \hookrightarrow \triangle BAD$;
 - (2) 求证: AD 是⊙O 的切线.

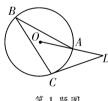


12. (2017 **丽水**) 如图,在 Rt $\triangle ABC$ 中, $\angle C = 90^{\circ}$,以 BC 为直径的 \odot 0 交 AB 于点 D, 切线 DE 交 AC 干点 E.


13. (2017 天水)如图, $\triangle ABD$ 是 $\bigcirc O$ 的内接三角形, E 是弦 BD 的中点,点 C 是 ⊙ O 外一点且 ∠ DBC $= \angle A$,连接 OE 延长与圆相交于点 F,与 BC 相

(2) 若⊙0 的半径为6,BC = 8,求弦 BD 的长.

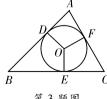
- (1)求证: $\angle A = \angle ADE$;



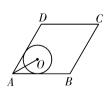
- **14**. (2017 **营口**) 如图, 点 E 在以 AB 为直径的 ⊙O上,点 $C \in BE$ 的中点,过点 C 作 CD 垂直于 AE, 交 AE 的延长线于点 D,连接 BE 交 AC 于点 F. (1)求证:CD 是⊙O 的切线;
 - (2)若 $\cos \angle CAD = \frac{4}{5}$, BF = 15, 求 AC 的长.

- 1. (2017 长春) 如图,点A,B,C 在⊙O 上,∠ABC = 29°,过点 C 作 $\odot O$ 的切线交 OA 的延长线于点 D, 则 $\angle D$ 的大小为
 - A. 29°
- B. 32°
- $C.42^{\circ}$
- D. 58°

第1题图



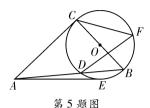
第2题图


- 2. 如图,在矩形 ABCD 中,AB=4,AD=5,AD,AB,BC 分别与⊙0 相切于 E, F, G 三点,过点 D 作⊙0 的 切线 BC 于点 M, 切点为 N, 则 DM 的长为 (

第13题图

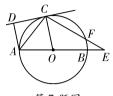
- A. $\frac{13}{3}$ B. $\frac{9}{2}$ C. $\frac{4}{3}\sqrt{13}$ D. $2\sqrt{5}$
- **3**. △ABC 的内切圆的三个切点分别为 $D, E, F, \angle A$ $=75^{\circ}$, $\angle B = 45^{\circ}$, 则圆心角 $\angle EOF =$ 度.

第3题图


第4题图

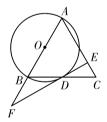
4. (2017 无锡改编) 如图, 菱形 ABCD 的边 AB = 20, 面积为 320, ∠BAD < 90°, ⊙O 与边 AB, AD 都相 切,AO = 10,则 $\odot O$ 的半径长为_____.

交于点 C.

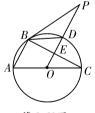

(1)求证:BC 是⊙O 的切线;

- 5. (2017 辽阳) 如图, $Rt \triangle ABC$ 中, $\angle ACB = 90^{\circ}$, 以 BC 为直径的 $\bigcirc O$ 交 AB 于点 D, E, F 是 $\bigcirc O$ 上两 点, 连接 AE, CF, DF, 满足 EA = CA.
 - (1)求证:AE 是 $\odot O$ 的切线;
 - (2) 若 $\odot O$ 的半径为 3, $\tan \angle CFD = \frac{4}{3}$, 求 AD 的长.

7. (2017 **金华**) 如图,已知 AB 是 $\odot O$ 的直径,点 C 在 $\odot O$ 上, CD 是 $\odot O$ 的切线, $AD \perp CD$ 于点 D, E 是 AB 延长线上一点, CE 交 $\odot O$ 于点 F, 连接 OC, AC.


- (1)求证:*AC* 平分∠*DAO*.
- (2) 若 $\angle DAO = 105^{\circ}, \angle E = 30^{\circ},$
- ①求 $\angle OCE$ 的度数;
- ②若 $\odot 0$ 的半径为 $2\sqrt{2}$,求线段 *EF* 的长.

第7题图


4 中教联

- **6**. (2017 **西宁**) 如图,在 $\triangle ABC$ 中,AB = AC,以 AB 为 直径作 $\bigcirc O$ 交 BC 于点 D,过点 D 作 $\bigcirc O$ 的切线 DE 交 AC 于点 E,交 AB 延长线于点 F.
 - (1)求证: $DE \perp AC$;
 - (2)若AB = 10,AE = 8,求BF的长.

第6题图

- **8**. 如图, $\triangle ABC$ 内接于 $\bigcirc O$, AC 为 $\bigcirc O$ 的直径, PB 是 $\bigcirc O$ 的切线, B 为切点, $OP \perp BC$, 垂足为 E, 交 $\bigcirc O$ 于点 D, 连接 BD.
 - (1) 求证:*BD* 平分∠*PBC*;
 - (2) 若 \odot O 的半径为 1, PD = 3DE, 求 OE 及 AB 的长.

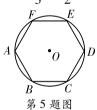
第8题图

第26讲 与圆有关的计算

- 1. (2017 天门) 一个扇形的弧长是 10π cm, 面积是 60π cm²,则此扇形的圆心角的度数是 A. 300° B. 150° C. 120° D. 75°
- 2. (2017 湘潭) 如图,在半径为 4 的 ⊙ 0 中, CD 是直 径, AB 是弦, 且 $CD \perp AB$, 垂足为点 E, ∠AOB = 90°,则阴影部分的面积是
 - $A.4\pi-4$
- $B.2\pi-4$
- $C.4\pi$
- $D.2\pi$

第2题图

- 3. (2017 山西) 如图是某商品的标志图案, AC 与 BD 是⊙O的两条直径,首尾顺次连接点A,B,C,D, 得到四边形 ABCD. 若 AC = 10 cm, $\angle BAC$ = 36°, 则图中阴影部分的面积为
 - $A.5\pi$ cm²
- B. 10π cm²
- $C.15\pi$ cm²
- $D.20\pi$ cm²
- **4.** (2017 丽水) 如图,点 C 是以 AB 为直径的半圆 O的三等分点,AC=2,则图中阴影部分的面积是



$$C.\,\frac{2\pi}{3}-\sqrt{3}$$

- 5. (2017 沈阳) 正六边形 ABCDEF 内接于⊙0,正六 边形的周长是 $12, 则 \odot 0$ 的半径是
 - $A.\sqrt{3}$

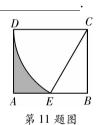
B. 2

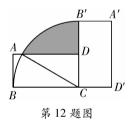
C. $2\sqrt{2}$

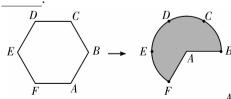
- D. $2\sqrt{3}$
- **6**. 如图,把一个圆锥沿母线 OA 剪开,展开后得到扇 形 AOC,已知圆锥的高 h 为 12 cm,OA = 13 cm,则 扇形 AOC 中AC的长为
 - $A.10\pi$ cm
- B. 15π cm
- C. $10\sqrt{3}\pi$ cm
- D. $20\sqrt{2}\pi$ cm

第6题图

第7题图

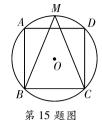

7. (2017 台州) 如图, 扇形纸扇完全打开后, 外侧两


- 竹条 AB, AC 的夹角为 120°, AB 长为 30 厘米,则 BC的长为 厘米. (结果保留 π)
- 8. (2017 泰安) 工人师傅用一张半径为 24 cm, 圆心 角为150°的扇形铁皮做成一个圆锥的侧面,则这 个圆锥的高为 cm.
- 9. (2017 贵阳) 如图, 正六边形 ABCDEF 内接于 ⊙0,⊙0 的半径为 6,则这个正六边形的边心距 OM 的长为

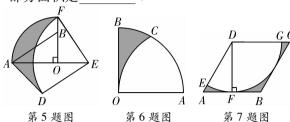


- 10. (2017广州)如图,圆锥的侧面展开图是一个圆 心角为 120° 的扇形,若圆锥的底面圆半径是 $\sqrt{5}$, 则圆锥的母线 l = .
- 11. (2017 抚顺) 如图, 在矩形 ABCD 中, CD = 2, 以 点 C 为圆心, CD 长为半径画弧, 交 AB 边于点 E,且 E 为 AB 中点,则图中阴影部分的面积为

- 12. (2017 营口) 如图,将矩形 ABCD 绕点 C 沿顺时 针方向旋转 90°到矩形 A'B'CD'的位置, AB=2. AD = 4,则阴影部分的面积为 .
- 13. 如图,将边长为3的正六边形铁丝框 ABCDEF 变 形为以点 A 为圆心, AB 为半径的扇形(忽略铁 丝的粗细). 则所得扇形 AFB(阴影部分) 的面积 为_


第13题图 14. 如图,在 $\triangle ABC$ 中, $\angle A = 50^{\circ}$,BC =6,以 BC 为直径的半圆 O 与 AB, AC 分别交于点 $D \setminus E$,则图中阴影 部分面积之和等于 .(结

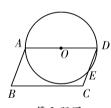
果保留π)



15. 如图,正方形 ABCD 内接于⊙O, M 为AD中点,连 接 BM, CM.

- (1) 求证:BM = CM;
- (2)当0的半径为2时,求BM的长.

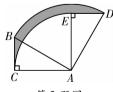
5. (2017 桂林模拟) 如图,在 Rt △AOB 中,∠AOB = 90°, OA = 3, OB = 2, 将 Rt $\triangle AOB$ 绕点 O 顺时针旋 转90°后得Rt \triangle FOE,将线段EF绕点E逆时针旋 转 90°后得线段 ED, 分别以 O, E 为圆心, OA, ED长为半径画弧 AF 和弧 DF,连接 AD,则图中 阴影 部分面积是

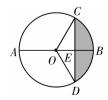


6 加图 在扇形 AOB 中, ∠AOB = 90°, 以点 A 为圆 为长为半径作 \overrightarrow{OC} 交 \overrightarrow{AB} 于点 C,若 OA = 2,

1. 如图,在5×5的正方形网格中,每个小正方形的 边长都为1,若将 $\triangle AOB$ 绕点O 顺时针旋转90°得 到 $\triangle A'OB'$,则A点运动的路径AA'的长为(

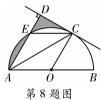
Α. π $B.2\pi$




- 第1题图
- 2. (2017 烟台)如图, □ABCD中, ∠B=70°, BC=6, 以 AD 为直径的 $\odot O$ 交 CD 于点 E,则DE的长为
- A. $\frac{1}{3}\pi$ B. $\frac{2}{3}\pi$ C. $\frac{7}{6}\pi$
- 3. (2017 莱芜) 如图,在 Rt △ABC 中, ∠BCA = 90°, $\angle BAC = 30^{\circ}, BC = 2$,将 Rt $\triangle ABC$ 绕 A 点顺时针 旋转 90°得到 Rt $\triangle ADE$,则 BC 扫过的面积为

A. $\frac{\pi}{2}$ B. $(2 - \sqrt{3}) \pi$

C. $\frac{2-\sqrt{3}}{2}\pi$



第3题图

4. (2017 **内江**) 如图, AB 是⊙O 的直径, 弦 CD ⊥ AB 于 点 E, $\odot O$ 的半径为 $\sqrt{3}$, 弦 CD 的长为 3 cm,则图中阴 影部分面积是

- (2017 **重庆 B 卷)** 如图, 在边长为 6 的菱形 ABCD 中, $\angle DAB = 60^{\circ}$, 以点 D 为圆心, 菱形的高 DF 为 半径画弧,交AD 于点E,交CD 于点G,则图中阴 影部分的面积是
- **8**. (2017 **绵阳**) 如图, AB 是 ⊙ O 的直径, C 是半圆 O上的一点,AC 平分 $\angle DAB$, $AD \bot CD$,垂足为 D,AD交⊙O 于点 E,连接 CE.
 - (1) 判断 CD 与 $\odot O$ 的位置关系, 并证明你的 结论;
 - (2) 若 E 是AC的中点, ⊙O 的半径为 1, 求图中阴 影部分的面积.

解题技巧训练强化五 与切线有关的证明与计算

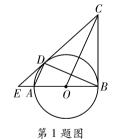
【知识筹备】与切线有关的证明与计算的相关知识 如下:

- 1. 切线的判定:
- 2. 切线的相关计算.

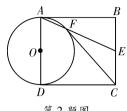
" 连半径, 证垂直":

【方法指导】与切线有关的证明与计算方法如下:

- 1. 证明一条直线是圆的切线时,有两种方法:
- (1) 定义法: 与圆只有一个公共点的直线是圆 的切线,也可以利用圆心到直线的距离等于半径的 直线是圆的切线判定:
 - (2)利用判定定理:
- ①当已知条件给出圆与直线有 证明圆心与公共点的连线与这条直

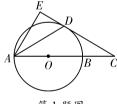


②在已知条件中,未给出直线与圆有公共点 时,那么就自圆心向这条直线作垂线,再证明垂线 段的长度与半径相等即可,即"作垂直,证半径".

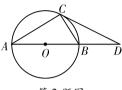

2. 在根据切线的性质求线段的长度问题时,一 般是找到直角三角形,根据直角三角形的三角函数 关系或利用勾股定理使问题得以解决,有时也会根 据圆中相等的角得到相似三角形,根据相似三角形 对应边成比例建立等式来解决.

类型1 与全等三角形相关

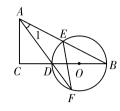
- **1**. (2017 **凉山州**) 如图,已知 AB 为 ⊙ O 的 直径,AD, BD 是 $\odot O$ 的弦, BC 是 $\odot O$ 的切线, 切点为 B, OC//AD, BA, CD 的延长线相交于点 E.
 - (1)求证:DC 是 $\odot 0$ 的切线:
 - (2) *AE* = 1, *ED* = 3, 求 ⊙ 0 的半径.


- 2. 如图,四边形 ABCD 为矩形, E 为 BC 为中点, 连接 AE,以AD 为直径的⊙O 交AE 于点F,连接CF.
 - (1)求证:CF 与⊙O 相切;
 - (2)若 AD = 2, F 为 AE 的中点, 求 AB 的长.

第2题图


类型 2 与相似三角形相关

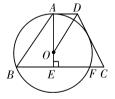
- 1. (2017 宜宾) 如图, $AB \in O$ 的直径, 点 $C \in AB$ 的延长线上,AD 平分 $\angle CAE$ 交 $\odot O$ 于点 D,且 AE $\bot CD$,垂足为点 E.
 - (1)求证:直线 CE 是 $\odot O$ 的切线;
 - (2) 若 BC = 3, $CD = 3\sqrt{2}$, 求弦 AD 的长.


第1题图

- **2**. (2017 **乌鲁木齐**) 如图, $AB \in O$ 的直径, $CD \in ABC$ 中, $ABC \in ABC$ 中 ⊙0 相切于点 C,与 AB 的延长线交于 D.
 - (1)求证: $\triangle ADC \hookrightarrow \triangle CDB$;
 - (2) 若 AC = 2, $AB = \frac{3}{2}CD$, 求 $\odot O$ 半径.

第2题图

- BC 边上一点,以 DB 为直径的 ⊙O 经过 AB 的中 点 E,交 AD 的延长线于点 F,连接 EF.
 - (1)求证: $\angle 1 = \angle F$.
 - (2)若 $\sin B = \frac{\sqrt{5}}{5}$, $EF = 2\sqrt{5}$, 求 CD 的长.



第2题图

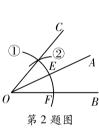
类型3 与锐角三角函数相关

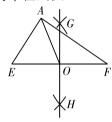
- 1. (2017 绥化)如图,梯形 ABCD中,AD//BC,AE _ BC 于点 E, $\angle ADC$ 的平分线交 AE 于点 O, 以点 O为圆心,OA 为半径的圆经过点B,交BC 于另一点 F.
 - (1)求证:CD 与⊙O 相切;
 - (2) 若 BF = 24, OE = 5, 求 $tan \angle ABC$ 的值.

第1题图

第七章 图形与变换

第27讲 尺规作图

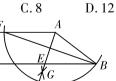

1. (2017 衢州) 下列四种基本尺规作图分别表示: ①作一个角等于已知角;②作一个角的平分线; ③作一条线段的垂直平分线;④过直线外一点 *P* 作已知直线的垂线,则对应选项中作法错误的是


A. (1)

① B. ②

C. (3

- - A. 以点 F 为圆心, OE 长为半径画弧
 - B. 以点 F 为圆心, EF 长为半径画弧
 - C. 以点 E 为圆心, OE 长为半径画弧
 - D. 以点 E 为圆心, EF 长为半径画弧



第3题图

- **3**. (2017 **宜昌**) 如图,在 $\triangle AEF$ 中,尺规作图如下:分别以点 E,点 F 为圆心,大于 $\frac{1}{2}$ EF 的长为半径作弧,两弧相交于 G,H 两点,作直线 GH,交 EF 于点G,连接 AG,则下列结论正确的是
 - A. AO 平分∠EAF
- B. AO 垂直平分 EF
- C. GH 垂首平分 EF
- D. GH 平分 AF
- **4.** (2017 东营) 如图,在 $\Box ABCD$ 中,用直尺和圆规作 $\angle BAD$ 的平分线 AG 交 BC 于点 E. 若 BF = 8, AB = 5,则 AE 的长为

A. 5

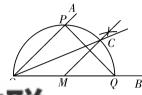
B. 6

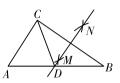
第4题图

5. (2017 **南通**)已知∠*AOB*,作图. 步骤 1:在 *OB* 上 任取一点 *M*,以点 *M* 为圆心,*MO* 长为半径画半 圆,分别交 *OA*,*OB* 于点 *P*,*O*;

步骤 2:过点 M 作 PQ 的垂线交PQ于点 C;

步骤3:画射线 OC.

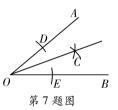

则下列判断: $\widehat{\mathbb{Q}PC} = \widehat{CQ} @MC //OA$; $\widehat{\mathbb{Q}OP} = PQ$; $\widehat{\mathbb{Q}OC} = PQ = PQ$; $\widehat{\mathbb{Q}OC} = PQ = PQ$ ()


A. 1

B. 2

C. 3

D. 4



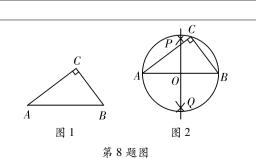
第6题图

- $\triangle ABC$ 中, AB > AC, 按以下步骤作图: 分别以点 B 和点 C 为圆心, 大于 BC 一半的长为半径作圆弧, 两弧相交于点 M 和点 N, 作直线 MN 交 AB 于点 D; 连接 CD. 若 AB = 6, AC = 4, 则 $\triangle ACD$
- 7. (2017 **邵阳**) 如图所示,已知 $\angle AOB = 40^{\circ}$,现按照以下步骤 作图:

的周长为 .

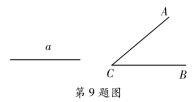
①在 OA, OB 上分别截取线段 OD, OE, 使 OD = OE; ②分别

以 D, E 为圆心, 以大于 $\frac{1}{2}DE$

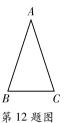

的长为半径画弧,在 $\angle AOB$ 内两弧交于点 C; ③作射线 OC. 则 $\angle AOC$ 的大小为

- 8. (2017 北京) 如图是"作已知直角三角形的外接圆"的尺规作图过程
 - 已知: Rt $\triangle ABC$, $\angle C = 90^{\circ}$, 求作 Rt $\triangle ABC$ 的外接圆.

作法:如图 2.

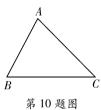

- (1)分别以点 A 和点 B 为圆心,大于 $\frac{1}{2}AB$ 的长为 半径作弧,两弧相交于 P,Q 两点;
- (2)作直线 PQ,交 AB 于点 O;
- (3)以 O 为圆心, OA 为半径作 $\odot O$. $\odot O$ 即为所求作的圆.

请回答:

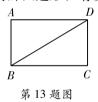


9. 已知:线段 a 及∠ACB.

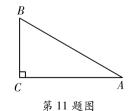
求作: $\bigcirc O$,使 $\bigcirc O$ 在 $\angle ACB$ 的内部, CO = a,且 $\bigcirc O$ 与 $\angle ACB$ 的两边分别相切.



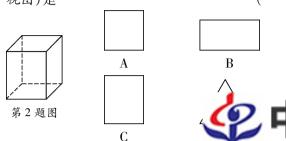
- **12**. 如图,已知等腰 $\triangle ABC$ 的顶角 $\angle A = 36^{\circ}$.
 - (1)请用尺规作图法作底角 $\angle ABC$ 的平分线 BD,交 AC 于点 D(保留作图痕迹,不要求写作法);
 - (2)证明: $\triangle ABC \hookrightarrow \triangle BDC$.

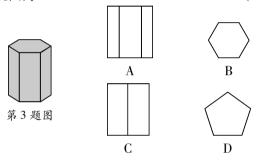


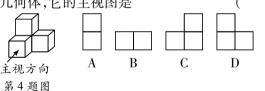
4 中教联

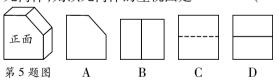

10. (2017 **白银**) 如图,已知 $\triangle ABC$,请用圆规和直尺作出 $\triangle ABC$ 的一条中位线 EF(不写作法,保留作图痕迹).

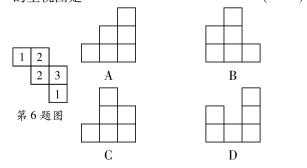
- 13. 如图,已知 BD 是矩形 ABCD 的对角线.
 - (1)作线段 BD 的垂直平分线,分别交 AD, BC 于点 E, F(用尺规作图法,保留作图痕迹,不要求写作法);
 - (2) 在(1) 的条件下,连接 BE, DF, 问四边形 BEDF 是什么特殊四边形? 请说明理由.

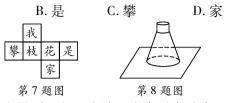

- 11. (2017 玉林一模) 如图, 已知 Rt $\triangle ABC$ 中, $\angle C = 90^{\circ}$, $\angle A = 30^{\circ}$, AB = 4.
 - (1)作 AC 边上的垂直平分线 DE, 交 AC 于点 D, 交 AB 于点 E(用尺规作图法,保留作图痕迹,不要求写作法和证明);
 - (2)连接 CE,求 $\triangle BEC$ 的周长.

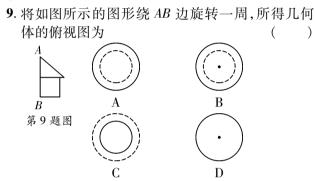

第28讲 视图与投影

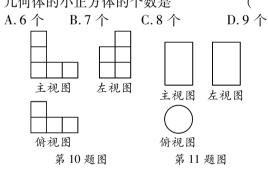

- **1.** (2017 **绥化**) 正方形的正投影不可能是 () A. 线段 B. 矩形 C. 正方形 D. 梯形
- 2. (2017 云南)下面长方体的主视图(主视图也称正 视图)是 ()

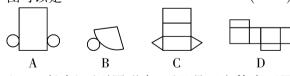

3. (2017 **吉林**) 如图是一个正六棱柱的茶叶盒, 其俯 视图为 ()

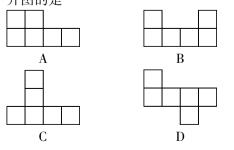

4. (2017 **衢州**) 如图是由四个相同的小立方体搭成的几何体,它的主视图是 ()


5. (2017 **莱芜**)将一个正方体沿正面相邻两条棱的中点连线截去一个三棱柱,得到一个如图所示的几何体,则该几何体的左视图是 ()


6. (2017 内江)由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是


7. (2017 攀枝花) 如图是每个面上都有一个汉字的正方体的一种表面展开图,那么在这个正方体的表面,与"我"相对的面上的汉字是 () A. 花 B. 是 C. 攀 D. 家


8. (2017 **安徽**) 如图,一个放置在水平实验台上的锥形瓶,它的俯视图为 ()


10. (2017 **荆门**)已知:如图,是由若干个大小相同的小正方体所搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是

11. 如图是一个几何体的三视图,则该几何体的展开图可以是 ()

12. (2017 长春)下列图形中,可以是正方体表面展 开图的是 ()

13. (2017 **江西**) 如图,正三棱柱的底面周 长为9,截去一个底面周长为3的正三 棱柱,所得几何体的俯视图的周长是

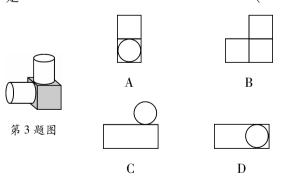
第 13 题图

14. (2017 西宁) 圆锥的主视图是边长为4 cm 的等边三角形,则该圆锥侧面展开图的面积是 cm².

能力提升

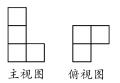
1. (2017 通辽)下列四个几何体的俯迎图中与企不

同的是


2017 海子

2. (2017 连云港)由6个大小相同的正方体搭成的 几何体如图所示,比较它的正视图,左视图和俯视 图的面积,则

- A. 三个视图的面积一样大
- B. 主视图的面积最小
- C. 左视图的面积最小

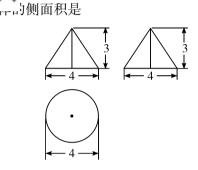


- D. 俯视图的面积最小
- 3. (2017 黔南州) 我国古代数学家利用"牟合方盖" 找到了球体体积的计算方法. "牟合方盖"是由两个圆柱分别从纵横两个方向嵌入一个正方体时两 圆柱公共部分形成的几何体,如图所示的几何体 是可以形成"牟合方盖"的一种模型,它的主视图 是

4. 如图,是由7个大小相同的小正方 体堆砌而成的几何体,若从标有 ①,②,③,④的四个小正方体中取 从正面看 走一个后,余下几何体与原几何体 第4题图 的主视图相同,则取走的正方体是 () A. ① B. ② C. ③ D. ④

5. (2017 **齐齐哈尔**) 一个几何体的主视图和俯视图如图所示,若这个几何体最多由 *a* 个小正方体组成,最少有 *b* 个小正方体组成,则 *a* + *b* 等于 ()

第5题图


B. 11

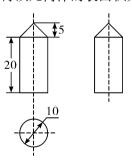
C. 12

D. 13

)

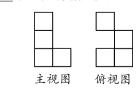
(上) (山州) 如图是一个几何体的三视图,则该

第6题图


A. 2 $\sqrt{13}\pi$

B. 10π

 $C.20\pi$


D. 4 $\sqrt{13}\pi$

7. (2017 **呼和浩特**) 如图是某几何体的三视图, 根据图中数据, 求得该几何体的表面积为

第7题图

8. 如图所示是由若干个完全相同的小正方体搭成的 几何体的主视图和俯视图. 则这个几何体可能是 由 个正方体搭成的.

第8题图

第29讲 图形的对称、平移与旋转

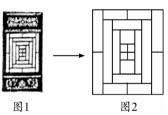
)

基础巩固

1. (2017 江西)下列图形中,是轴对称图形的是

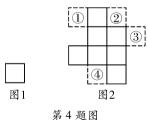
2. (2017 北京)下列图形中,是轴对称图形但不是中

心对称图形的是 A B C D


3. 我国传统建筑中,窗框(如图1)的图案玲珑剔透、 千变万化,窗框一部分如图2,它是一个轴对称图 形,其对称轴有 ()

A.1 条

B.2条


C.3条

D.4条

第3题图

4. (2017 河北)图 1 和图 2 中所有的小正方形都全等,将图 1 的正方形放在图 2 中①②③④的某一位置,使它与原来 7 个小正方形组成的图形是中心对称图形,这个位置是

A. (1)

B. (2)

C. ③

D.(4)

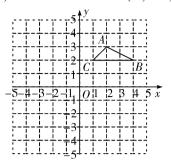
5. (2017 **大连**) 在平面直角坐标系 *xOy* 中,线段 *AB* 的两个端点坐标分别为 *A*(-1,-1), *B*(1,2), 平 移线段 *AB*,得到线段 *A'B'*,已知 *A'*的坐标为 (3,-1),则点 *B'*的坐标为

A.(4,2)

B. (5,2)

C.(6,2)

D. (5,3)


6. (2017 **青岛**) 如图, 若将 $\triangle ABC$ 绕点 O 逆时针旋转 90° , 则顶点 B 的对应点 B_1 的坐标为 ()

A.(-4,2)

B. (-2,4)

C.(4,-2)

D. (2, -4)

第6题图

A. 55°

B. 60°

 $C.65^{\circ}$

D. 70°

B

第7题图

8. (2017 **毕节**) 如图,在 Rt $\triangle ABC$ 中, $\angle ACB$ = 90°, AC = 6, BC = 8, AD 平分 $\angle CAB$ 交 BC 于 D 点, E, F 分别是 AD, AC 上的动点,则 CE + EF 的最小值为

()

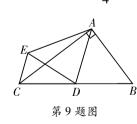
A. $\frac{40}{3}$

B. $\frac{15}{4}$

C. $\frac{24}{5}$

D. 6

(2017 无锡) 如图, △ABC 中, ∠BAC = 90°, AB = 3, AC = 4, 点 D 是 BC 的中点,将△ABD 沿 AD 翻 折得到△AED,连接 CE,则线段 CE 的长等于

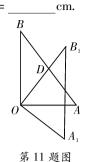

A. 2

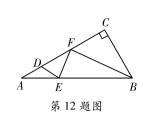
B. $\frac{5}{4}$

C. $\frac{5}{3}$

D. $\frac{7}{5}$

)

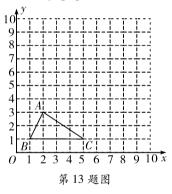



 $\begin{array}{c}
A \\
\downarrow 2 \\
B \\
A'
\end{array}$

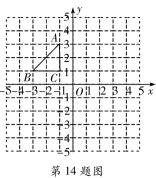
第 10 题图

- **10**. (2017 **宁夏**) 如图,将平行四边形 ABCD 沿对角线 BD 折叠,使点 A 落在点 A'处. 若 $\angle 1 = \angle 2 = 50^{\circ}$,则 $\angle A'$ 为 。
- **11**. (2017 黄冈) 已知: 如图, 在 $\triangle AOB$ 中, $\angle AOB$ = 90°, AO = 3 cm, BO = 4 cm. 将 $\triangle AOB$ 绕顶点 O, 按顺时针方向旋转到 $\triangle A_1OB_1$ 处, 此时线段 OB_1

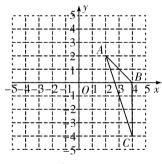
与 AB 的交点 D 恰好为 AB 的中点,则线段 B_1D


- **12**. 如图,在 Rt $\triangle ABC$ 中, $\angle CAB$ = 30°, $\angle C$ = 90°. AD = $\frac{1}{4}AC$, AB = 8, E 是 AB 上任意一点, F 是 AC 上任意
 - 一点,则折线 DEFB 的最短长度为

13. (2017 宁夏) 在平面直角坐标系


顶点的坐标分别为A(2,3),B(1,1),C(5,1).

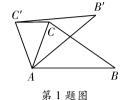
- (1)把 $\triangle ABC$ 平移后,其中点 A 移到点 $A_1(4,5)$, 画出平移后得到的 $\triangle A_1B_1C_1$;
- (2)把 $\triangle A_1B_1C_1$ 绕点 A_1 按逆时针方向旋转 90°, 画出旋转后的 $\triangle A_1B_2C_2$.

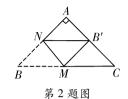


- **14**. (2017 **龙东地区**) 如图, 在平面直角坐标系中, Rt $\triangle ABC$ 三个顶点都在格点上, 点 A , B , C 的坐标 分别为 A(-1,3) , B(-3,1) , C(-1,1). 请解 析下列问题:
 - (1) 画出 $\triangle ABC$ 关于 y 轴对称的 $\triangle A_1B_1C_1$, 并写出 B_1 的坐标.

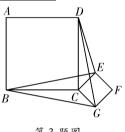
(2) 画出 $\triangle A_1B_1C_1$ 绕点 C_1 顺时针旋转 90°后得到的 $\triangle A_2B_2C_1$,并求出点 A_1 走过的路径长.

- **15.** (2017 **枣庄**) 如图,在平面直角坐标系中,已知 $\triangle ABC$ 三个顶点的坐标分别是 A(2,2), B(4,0), C(4,-4).
 - (1)请在图中,画出 $\triangle ABC$ 向左平移 6 个单位长 度后得到的 $\triangle A_1B_1C_1$;
 - (2)以点 O 为位似中心,将 $\triangle ABC$ 缩小为原来的 $\frac{1}{2}$,得到 $\triangle A_2B_2C_2$,请在图中 y 轴右侧, 画出 $\triangle A_2B_2C_2$,并求出 $\triangle A_2C_2B_2$ 的正弦值.

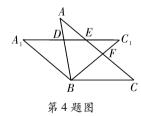

第15题图


能力提升

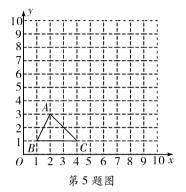
1. 如图,在 $\triangle ABC$ 中, $\angle CAB = 70^{\circ}$,将 $\triangle ABC$ 在平面 内绕点 A 旋转到 $\triangle AB'C'$ 的位置, 使 $CC'/\!\!/AB$, 则 旋转角的度数为


A. 35°

- B. 40°
- $C.50^{\circ}$
- $D.70^{\circ}$



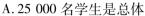
- 2. (2017 河南)如图,在 Rt △ABC г $=AC,BC=\sqrt{2}+1$,点M,N分别是 动点,沿MN所在的直线折叠 $\angle B$,以 点 B'始终落在边 AC 上, 若 $\triangle MB'C$ 为直角三角 形,则 BM 的长为
- 3. (2017 南充) 如图, 正方形 ABCD 和正方形 CEFG 边长 分别为 a 和 b, 正方形 CEFG 绕点 C 旋转,给出下列结 论:①BE = DG;② $BE \perp DG$; $(3)DE^2 + BG^2 = 2a^2 + 2b^2$.其 中正确结论是



第3题图

- (填序号)
- 4. (2016 娄底) 如图,将等腰 $\triangle ABC$ 绕顶点 B 逆时针 方向旋转 α 度到 $\triangle A_1B_1C_1$ 的位置 AB 与 A_1C_1 相 交于点 D,AC 与 A_1C_1,BC_1 分别相交于点 E,F.
 - (1)求证: $\triangle BCF \cong \triangle BA_1D$;
 - (2) 当 $\angle C = \alpha$ 度时,判定四边形 A_1BCE 的形状并 请说明理由.

- 5. (2017 黔南州)如图,在边长为1个单位长度的小 正方形组成的网格中,给出了格点三角形 ABC (顶点是网格线的交点).
 - (1) 先将△ABC 竖直向上平移 5 个单位,再水平向 右平移 4 个单位得到 $\triangle A_1B_1C_1$,请画出 $\triangle A_1B_1C_1$;
 - (2) 将 $\triangle A_1B_1C_1$ 绕 B_1 点 顺 时 针 旋 转 90°, 得 $\triangle A_2B_1C_2$,请画出 $\triangle A_2B_1C_2$;
 - (3)求线段 B_1C_1 变换到 B_1C_2 的过程中扫过区域 的面积.



第八章 统计与概率

第30讲 数据的收集、整理与描述

基础巩固

- 1. (2017 西宁)下列调查中,适合采用全面调查(普
 - A. 了解西宁电视台"教育在线"栏目的收视率
 - B. 了解青海湖斑头雁种群数量
 - C. 了解全国快递包裹产生包装垃圾的数量
 - D. 了解某班同学"跳绳"的成绩
- 2. 为了解某市参加中考的 25 000 2 况,抽查了其中1200名学生的 析. 下面叙述正确的是

- B.1 200 名学生的身高是总体的一个样本
- C. 每名学生是总体的一个个体
- D. 以上调查是全面调查
- 3. (2017 苏州) 为了鼓励学生课外阅读,学校公布了 "阅读奖励"方案,并设置了"赞成、反对、无所谓" 三种意见. 现从学校所有 2 400 名学生中随机征 求了100名学生的意见,其中持"反对"和"无所 谓"意见的共有30名学生,估计全校持"赞成"意 见的学生人数约为 (

A. 70

B. 720

C. 1 680

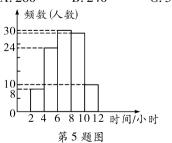
- D. 2 370
- 4. 一次数学测试后,某班 40 名学生的成绩被分为 5 组,第1~4组的频数分别为12,10,6,8,则第5组 的频率是 (

A. 0. 1

B. 0. 2

C.0.3

D.0.4


5. (2017 安徽) 为了解某校学生今年五一期间参加 社团活动时间的情况,随机抽查了其中100名学 生进行统计,并绘制成如图所示的频数直方图,已 知该校共有1000名学生,据此估计,该校五一期 间参加社团活动时间在8~10小时之间的学生数 大约是

A. 280

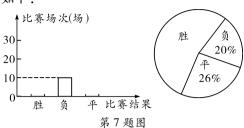
B. 240

C. 300

D. 260

其他 骑自15% 行车 25% 乘公共 步行

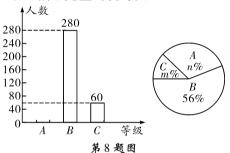
第6题图


6. (2017 温州) 某校学生到校方式情况的统计图如 图所示,若该校步行到校的学生有100人,则乘公 共汽车到校的学生有

A. 75 人

B. 100 人

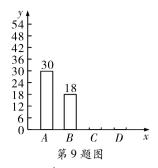
- C. 125 人
- D. 200 人
- 7. (2017 毕节)记录某足球队全年比赛结果("胜" "负""平")的条形统计图和扇形统计图(不完


整)如下:

根据图中信息,该足球队全年比赛胜了

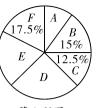
◄ (州) 某报社为了解市民对"社会主义核心 ■的知晓程度,采取随机抽样的方式进行 F,调查结果分为"A. 非常了解"、"B. 了

解"、"C. 基本了解"三个等级,并根据调查结果绘 制了如下两幅不完整的统计图.


(1)这次调查的市民人数为 人,m=

(2)补全条形统计图:

(3) 若该市约有市民 100 000 人,请你根据抽样调 查的结果,估计该市大约有多少人对"社会主义 核心价值观"达到"A. 非常了解"的程度.


9. (2017 深圳) 深圳市某学校抽样调查. A 类学生骑 共享单车,B 类学生坐公交车、私家车等,C 类学 生步行,D 类学生(其他),根据调查结果绘制了 不完整的统计图.

类型	频数	频率
A	30	x
B	18	0. 15
С	m	0.40
D	n	y

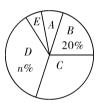
- (1)学生共 人,x =
- (2)补全条形统计图:
- (3) 若该校共有2000人, 骑共享单车的有

1. (2016 泰安) 某学校将为初一学 生开设 ABCDEF 共 6 门选修课, 现选取若干学生进行了"我最喜 欢的一门选修课"调查,将调查 结果绘制成如图统计图表(不完 整)

第1题图

选修课	A	В	С	D	E	F
人数	40	60		100		

根据图表提供的信息,下列结论错误的是(

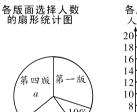

▶ 皮调查的学生人数为 400 人

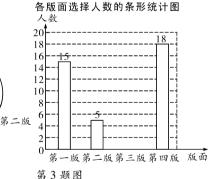
党计图中 E 部分扇形的圆心角为 72°

\$的学生中喜欢选修课 E,F 的人数分别 为80,70

- **10**. (2017 **大连**) 某校为了解全校学生对新闻、体育、 动画、娱乐、戏曲五类电视节目的喜爱情况,随机 选取该校部分学生进行调查,要求每名学生从中
 - 只选一类最喜爱的电视节目. 以下是根据调查结 果绘制的统计图表的一部分.

类别	A	В	С	D	E
节目 类型	新闻	体育	动画	娱乐	戏曲
人数	12	30	m	54	9

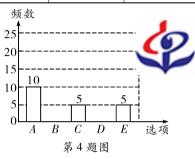



第10题图

根据以上信息,解答下列问题:

- (1)被调查的学生中,最喜爱体育节目的有 人,这些学生数占被调查总人数的百分比 为 %;
- (2)被调查学生的总数为 人,统计表中 m 的值为 ,统计图中 n 的值为 ;
- (3)在统计图中,E 类所对应扇形圆心角的度数
- (4)该校共有2000名学生,根据调查结果,估计 该校最喜爱新闻节目的学生数.

- D. 喜欢洗修课 C 的人数最少
- 2. (2017 常德) 彭山的枇杷大又甜, 在今年 5 月 18 日"彭山枇杷节"期间,从山上5棵枇杷树上采摘 到了200千克枇杷,请估计彭山近600棵枇杷树 今年一共收获了枇杷 千克.
- 3. (2017 徐州) 某校园文学社为了解本校学生对本 社一种报纸四个版面的喜欢情况,随机抽查部分 学生做了一次问卷调查,要求学生选出自己最喜 欢的一个版面,将调查数据进行了整理、绘制成部 分统计图如下:



请根据图中信息,解析下列问题:

- (1)该调查的样本容量为_____, $a = __$
- "第一版"对应扇形的圆心角为:
- (2)请你补全条形统计图:
- (3) 若该校有1000名学生,请你估计全校学生中 最喜欢"第三版"的人数.

4. (2017 德州) 随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项: A. 和同学亲友聊天; B. 学习; C. 购物; D. 游戏; E. 其他),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):

选项	频数	频率
A	10	m
В	n	0. 2
C	5	0. 1
D	p	0. 4
E	5	0. 1

根据以上信息解析下列问题:

- (1)这次被调查的学生有多少人?
- (2) 求表中 m, n, p 的值,并补全条形统计图.
- (3)若该中学约有 800 名学生,估计全校学生中利用手机购物或玩游戏的共有多少人? 并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.

5. (2016 **岳阳**) 某学校环保志愿者协会对该市城区 的空气质量进行调查,从全年 365 天中随机抽取 了80 天的空气质量指数(AQI)数据,绘制出三幅 不完整的统计图表,请根据图表中提供的信息解 答下列问题:

城区空气质量等级天数统计表

AQI 指数	质量等级	天数(天)
0 ~ 50	优	m
51 ~ 100	良	44
101 ~ 150	轻度污染	n
151 ~ 200	中度污染	4
201 ~ 300	重度污染	2
300 以上	严重污染	2

城区空气质量等级天数条形统计图

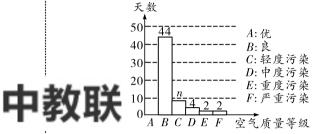
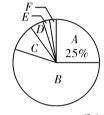



图 1 城区空气质量等级天数扇形统计图

A: 优 B: 良 C: 轻度污染染 D: 中度污污染染 F: 严

图 2

第5题图

- (2)补全条形统计图,并通过计算估计该市城区 全年空气质量等级为"优"和"良"的天数共有多 少天?
- (3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因.据此,请你提出一条合理化建议.

第31 讲 数据的分析

1. (2017 苏州) 有一组数据:2,5,5,6,7, 这组数据的 平均数为 ()

A. 3

B. 4

C. 5

D. 6

(

2. 一组数据 3,3,4,6,8,9 的中位数是 A. 4

B. 5

C.5.5

3. (2017 广东) 在学校举行"阳光少年, 励志青春" 的演讲比赛中,五位评委给选手小明的评分分别 为90,85,90,80,95,则这组数据的众数是(

A. 95

B. 90

C. 85

4. (2017 随州) 一组数据 2,3,5,4, 均数分别是

A.4 和 3.5

B.4和3.6

C.5 和 3.5

D.5 和 3.6

5. (2017 河南) 八年级某同学 6 次数学小测验的成 绩分别为80分,85分,95分,95分,95分,100 分,则该同学这6次成绩的众数和中位数分别是

A.95分,95分

B.95分,90分

C.90分,95分

D.95分,85分

- 6. (2017 黔西南)已知甲、乙两同学1分钟跳绳的平 均数相同, 若甲同学 1 分钟跳绳成绩的方差 $s_{\text{H}}^2 = 0.006$, 乙同学 1 分钟跳绳成绩的方差 $s_Z^2 =$ 0.035,则
 - A. 甲的成绩比乙的成绩更稳定
 - B. 乙的成绩比甲的成绩更稳定
 - C. 甲、乙两人的成绩一样稳定
 - D. 甲、乙两人的成绩稳定性不能比较
- 7. (2017 张家界) 某校组织学生参加植树活动,活动 结束后,统计了九年级甲班50名学生每人植树的 情况,绘制了如下的统计表:

植树棵数	3	4	5	6
人数	20	15	10	5

那么这 50 名学生平均每人植树

8. (2017 辽阳) 甲、乙、丙、丁四名射击运动员分别连 续射靶 10 次,他们各自的平均成绩及其方差如下 表所示,如果选一名成绩好且发挥稳定的运动员 参赛,则应选择的运动员是 .

	甲	乙	丙	丁
平均成绩(环)	8.6	8. 4	8.6	7. 6
方差	0. 94	0. 74	0. 56	1. 92

- 9. (2017 绥化) 在一次射击训练中,某位选手五次射 击的环数分别为5,8,7,6,9,则这位选手五次射 击环数的方差为
- **10**. (2017 巴中)—组数据 2,3,x,5,7 的平均数是 5,

则这组数据的中位数是

11. (2017 南京) 某公司共 25 名员工, 下表是他们月 收入的资料.

月收入/元	45 000	18 000	10 000	5 500	4 800	3 400	3 000	2 200
人数	1	1	1	3	6	1	11	1

(1)该公司员工月收入的中位数是

众数是 元.

(2)根据上表,可以算得该公司员工月收入的平 均数为6276元, 你认为用平均数、中位数和众

元,

那一个反映该公司全体员工月收入水平 适?说明理由.

12. (2017 宜昌) YC 市首批一次性投放公共自行车 700 辆供市民租用出行,由于投入数量不够,导 致出现需要租用却未租到车的现象,现随机抽取 的某五天在同一时段的调查数据汇成如下表格. 请回答下列问题:

	时间	第一天 7:00 -8:00	第二天 7:00 -8:00	第三天 7:00 -8:00	第四天 7:00 -8:00	第五天 7:00 -8:00
自和	·要租用 行车却未 到车的 数(人)	1 500	1 200	1 300	1 300	1 200

(1)表格中的五个数据(人数)的中位数是多少? (2)由随机抽样估计,平均每天在7:00-8:00 需要租用公共自行车的人数是多少?

1. (2017 成都)学习全等三角形时,数学兴趣小组设 计并组织了"生活中的全等"的比赛,全班同学的 比赛结果统计如下表:

得分(分)	60	70	80	90	100
人数(人)	7	12	10	8	3

则得分的众数和中位数分别为

A.70分,70分

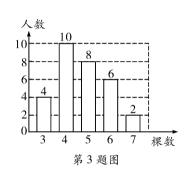
B.80分,80分

)

)

C.70分,80分

D.80分,70分

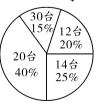

2. (2017 南通) 一组数据:1,2,2,3,若添加一个数据 2,则发生变化的统计量是

A. 平均数

В. 中

C. 众数

3. (2017 宜宾) 某单位组织职工开展 (里) 量与人数之间关系如图,下列说法不正确的是



- A. 参加本次植树活动共有30人
- B. 每人植树量的众数是 4 棵
- C. 每人植树量的中位数是5棵
- D. 每人植树量的平均数是 5 棵
- 4. (2017 绍兴)下表记录了甲、乙、丙、丁四名射击运 动员最近几次选拔赛成绩的平均数和方差:

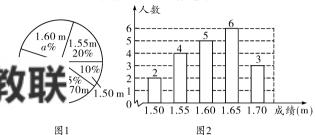
	甲	乙	丙	丁
平均 数(环)	9. 14	9. 15	9. 14	9. 15
方差	6. 6	6. 8	6. 7	6. 6

根据表中数据,要从中选择一名成绩好且发挥稳 定的运动员参加比赛,应选择 ()

- A. 甲
- B. 乙
- D. 丁
- 5. 某电脑公司销售部为了定制下 个月的销售计划,对20位销售 员本月的销售量进行了统计,绘 制成如图所示的统计图,则这20 位销售人员本月销售量的平均 数、中位数、众数分别是()

A. 19,20,14

第5题图 B. 19,20,20


- C. 18. 4, 20, 20
- D. 18. 4,25,20
- 6. (2017 日照) 为了解某初级中学附近路口的汽车 流量,交通管理部门调查了某周一至周五下午放 学时间段通过该路口的汽车数量(单位:辆),结

果如下:

183 191 169 190 177

则在该时间段中,通过这个路口的汽车数量的平 均数是

- 7. (2017 **鄂州**) 一个样本为 1,3,2,2,a,b,c,已知这 个样本的众数为3,平均数为2,则这组数据的中 位数为
- 8. 在一次中学生田径运动会上,根据参加男子跳高 初赛的运动员的成绩(单位:m),绘制出如下的统 计图 1 和图 2,请根据相关信息,解析下列问题:

第8题图

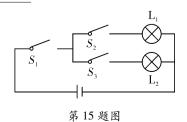
- (1)图1中a的值为
- (2)求统计的这组初赛成绩数据的平均数、众数 和中位数:
- (3)根据这组初赛成绩,由高到低确定9人进入 复赛,请直接写出初赛成绩为1.65 m 的运动员能 否进入复赛.

第32讲 概率及其应用

础巩固

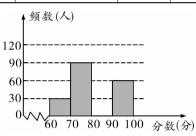
- **1**. (2017 **沈阳**)下列事件中,是必然事件的是 ()
 - A. 将油滴入水中,油会浮在水面上
 - B. 车辆随机到达一个路口, 遇到红灯
 - C. 如果 $a^2 = b^2$, 那么 a = b
 - D. 掷一枚质地均匀的硬币,一定正面向上
- 2. (2017 孝感)下列说法正确的是
 - A. 调查孝感区居民对创建"全国卫生城市"的知 晓度,官采用抽样调查
 - B. 一组数据 85,95,90,95,95,90. 众数为95
 - C. "打开电视,正在播放乒乓球比
 - D. 同时抛掷两枚质地均匀的硬币一次,出现两个 正面朝上的概率为 🕹
- 3. (2017 阿坝州) 对"某市明天下雨的概率是 75%" 这句话,理解正确的是
 - A. 某市明天将有75%的时间下雨
 - B. 某市明天将有75%的地区下雨
 - C. 某市明天一定下雨
 - D. 某市明天下雨的可能性较大
- 4. (2017 贵阳)某学校在进行防溺水安全教育活动 中,将以下几种在游泳时的注意事项写在纸条上 并折好,内容分别是①互相关心;②互相提醒; ③不要相互嬉水;④相互比潜水深度;⑤选择水流 湍急的水域;⑥选择有人看护的游泳池. 小颖从这 6 张纸条中随机抽出一张,抽到内容描述正确的 纸条的概率是
- B. $\frac{1}{3}$ C. $\frac{2}{3}$
- 5. (2017 岳阳) 从 $\sqrt{2}$,0,π,3. 14,6 这 5 个数中随机 抽取一个数,抽到有理数的概率是
- B. $\frac{2}{5}$ C. $\frac{3}{5}$
- 6. (2017 湖州) 一个布袋里装有 4 个只有颜色不同 的球,其中3个红球,1个白球.从布袋里摸出1 个球,记下颜色后放回,搅匀,再摸出1个球,则两 次摸到的球都是红球的概率是

- 7. (2017 辽阳) 如果小球在如图所示 的地面上自由滚动,并随机停留在 某块方砖上,每块方砖大小、质地完 全一致,那么它最终停留在黑色区 域的概率是


- 8. (2017 通辽) 毛泽东在《沁园春·雪》中提到五位历 史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思 汗,小红将这五位名人简介分别写在五张完全相同 的知识卡片上,小哲从中随机抽取一张,卡片上介 绍的人物是唐朝以后出生的概率是
- 9. (2017 徐州) 如图, 转盘中6个扇形 的面积相等,任意转动转盘1次,当 转盘停止转动时,指针指向的数小 干5的概率为

无无顺)一个不透明的袋中装

色外均相同的9个红球,3个白球,若干 个绿球,每次摇匀后随机摸出一个球,记下颜色 后再放回袋中,经过大量重复实验后,发现摸到 绿球的概率稳定在 0.2,则袋中有绿球 个.

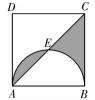

- 11. (2017 台州) 三名运动员参加定点投篮比赛,原 定出场顺序是:甲第一个出场,乙第二个出场,丙 第三个出场,由于某种原因,要求这三名运动员 用抽签方式重新确定出场顺序,则抽签后每个运 动员的出场顺序都发生变化的概率为 .
- **12**. (2017 **聊城**) 如果任意选择一对有序整数(m,n),其 中 $|m| \le 1$. $|n| \le 3$.每一对这样的有序整数被选择 的可能性是相等的,那么关于x的方程 $x^2 + nx +$ m = 0 有两个相等实数根的概率是
- **13**. (2017 盘锦)对于□ABCD,从以下五个关系式中 任取一个作为条件: ①AB = BC; ② $\angle BAD = 90^{\circ}$; ③AC = BD; ④ $AC \perp BD$; ⑤ $\angle DAB = \angle ABC$, 能判 定□ABCD 是矩形的概率是
- **14.** 点 P 的坐标是(a,b),从-2,-1,0,1,2 这五个 数中任取一个数作为 a 的值,再从余下的四个数 中任取一个数作为 b 的值,则点 P(a,b) 在平面 直角坐标系中第二象限内的概率是
- 15. (2017 娄底) 在如图所示的电路中, 随机闭合开 关 S_1, S_2, S_3 中的两个,能让灯泡 L_1 发光的概率

- **16**. (2017 **南京**) 全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:
 - (1)甲家庭已有一个男孩,准备再生一个孩子, 则第二个孩子是女孩的概率是 ;
 - (2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.
- 18. (2017 乐山) 为了了解我市中学生参加"科普知识"竞赛成绩的情况,随机抽查了部分参赛学生的成绩,整理并制作出如下的统计表和统计图,如图所示.请根据图表信息解析下列问题:

组别	分数段(分)	频数	频率
A 组	60 ≤ <i>x</i> < 70	30	0. 1
B组	$70 \leqslant x < 80$	90	n
C 组	80 ≤ <i>x</i> < 90	m	0.4
D组	90 ≤ <i>x</i> < 100	60	0. 2

第 18 题图

- (1)在表中: m = ,n =
- (2)补全频数分布直方图;
- (3)小明的成绩是所有被抽查学生成绩的中位数,据此推断他的成绩在组;
- (4)4个小组每组推荐1人,然后从4人中随机抽取2人参加颁奖典礼,恰好抽中*A*,*C*两组学生的概率是多少?并列表或画树状图说明.
- **17**. (2017 **营口**) 如图,有四张背面完全相同的纸牌 *A*,*B*,*C*,*D*,其正面分别画有四个不同的几何图 形,将这四张纸牌背面朝上洗匀.
 - (1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;
 - (2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用 *A*, *B*, *C*, *D* 表示).

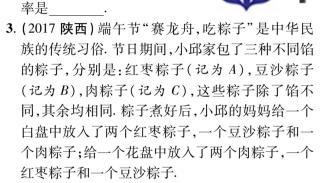


第17题图

能力提升

1. (2017 **赤峰**) 小明向如图所示的正 D 方形 ABCD 区域内投掷飞镖,点 E 是以 AB 为直径的半圆与对角线 AC 的交点. 如果小明投掷飞镖一 次,则飞镖落在阴影部分的概率为 A

第1题图

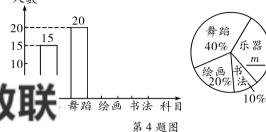

A. $\frac{1}{2}$

B. $\frac{1}{4}$

C. $\frac{1}{3}$

D. $\frac{1}{8}$

2. (2017 杭州) 一个仅装有球的不透明布袋里共有 3 个球(只有颜色不同),其中 2 个是红球,1 个是 白球,从中任意摸出一个球,记下 匀,再任意摸出一个球,则两次摸



根据以上情况,请你回答下列问题:

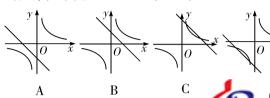
- (1)假设小邱从白盘中随机取一个粽子,恰好取 到红枣粽子的概率是多少?
- (2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.

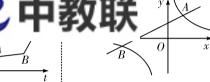
4. (2017 枣庄) 为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门). 对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解析下列问题:


学生选修课程条形统计图 学生选修课程扇形统计图 人 数

- (1)本次调查的学生共有_____人,在扇形统计图中,m的值是;
- (2)将条形统计图补充完整;
- (3)在被调查的学生中,选修书法的有 2 名女同学,其余为男同学,现要从中随机抽取 2 名同学代表学校参加某社区组织的书法活动,请写出所抽取的 2 名同学恰好是 1 名男同学和 1 名女同学的概率.

专题一 函数图象问题

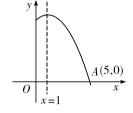

1. (2017 达州) 已知二次函数 $\gamma =$ $ax^2 + bx + c$ 的图象如下,则一次 函数 y = ax - 2b 与反比例函数 $y = \frac{c}{r}$ 在同一平面直角坐标系中


的图象大致是

第1题图

第2题图

2. (2017 绍兴) 均匀地向一个容制 注水,最后把容器注满,在注水 过程中,水面高度 h 随时间 t 的 变化规律如图所示(图中 OABC 为折线),这个容器的形状可以是


A. abc < 0

的解集为

A. x < -6

C. x > 2

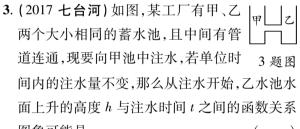
B. -6 < x < 0 或 x > 2D. x < -6 或 0 < x < 2

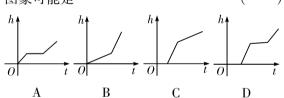
5. (2017 徐州) 如图, 在平面直角坐标系 xOy 中, 函

数 $y = kx + b(k \neq 0)$ 与 $y = \frac{m}{r}(m \neq 0)$ 的图象相交

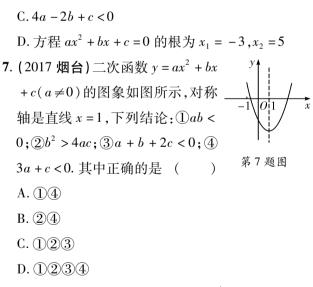
于点 A(2,3), B(-6,-1), 则不等式 $kx + b > \frac{m}{x}$

第5题图

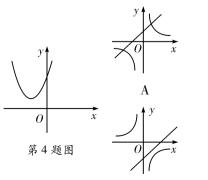

1,则下列结论中错误的是

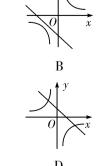

B. 当 x < 1 时, y 随 x 的增大而增大

第6题图

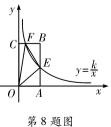

)

- D
- 两个大小相同的蓄水池,且中间有管 道连通,现要向甲池中注水,若单位时 间内的注水量不变,那么从注水开始,乙水池水 面上升的高度 h 与注水时间 t 之间的函数关系 图象可能是

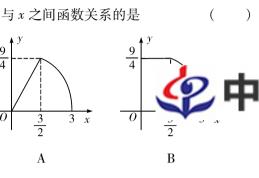




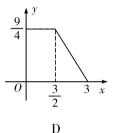
4. (2017 鄂州) 已知二次函数 $y = (x + m)^2 - n$ 的图 象如图所示,则一次函数 y = mx + n 与反比例函 数 $y = \frac{mn}{n}$ 的图象可能是



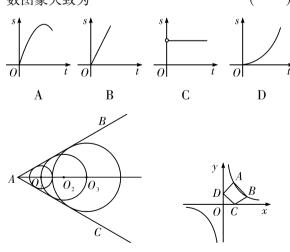
6. (2017 桂林一模) 如图, 二次函数 $y = ax^2 + bx + c$ 的图象的一部分过点A(5,0),对称轴为直线x =



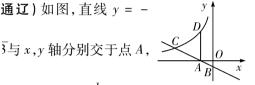
A. $\frac{2}{3}$ B. 1 C. $\frac{4}{3}$


 $D.\sqrt{2}$

)


9. (2017 西宁) 如图, 在正方形 ABCD 4 中,AB = 3 cm,动点M 自A 点出发 沿AB 方向以每秒 1 cm 的速度运 动,同时动点N自D点出发沿折线 \overline{A} DC - CB 以每秒 2 cm 的速度运动, 到达 B 点时运动同时停止,设 $\triangle AMN$ 的面积为 γ (cm^2) ,运动时间为x(i),则下列图象中能大致 反映 γ 与 x 之间函数关系的是

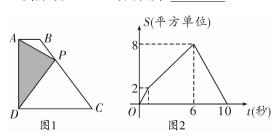
10. (2017 日照)如图, $\angle BAC = 60^{\circ}$, 点 O 从 A 点出 发,以 2 cm/s 的速度沿 $\angle BAC$ 的角平分线向右 运动,在运动过程中,以 0 为圆心的圆始终保持 与 $\angle BAC$ 的两边相切,设 $\odot O$ 的面积为 $S(\text{cm}^2)$, 则 $\odot O$ 的面积S与圆心O运动的时间t(s)的函 数图象大致为



11. (2017 乌鲁木齐) 如图,点A(a,3),B(b,1)都在 双曲线 $y = \frac{3}{x}$ 上,点 C,D 分别是 x 轴,y 轴上的

第11 题图

第10题图


- 动点,则四边形 ABCD 周长的最小值为 ()
- A. $5\sqrt{2}$
- B. $6\sqrt{2}$
- C. $2\sqrt{10} + 2\sqrt{2}$
- D. $8\sqrt{2}$
- 12. (2017 盘锦) 在平面直角坐标系中, 点 P 的坐标为 (0, -5),以 P 为圆心的圆与 x 轴相切, $\odot P$ 的弦 AB(B 点在 A 点右侧)垂直于 γ 轴,且 AB=8,反比 例函数 $y = \frac{k}{\kappa} (k \neq 0)$ 经过点 B ,则 k =_
- 13. (2017 通辽) 如图, 直线 y = -

B,与反比例函数 $y = \frac{k}{x}$ 的图象

在第二象限交于点 C,过点 A 作 x 轴的垂线交该 反比例函数图象于点 D. 若 AD = AC,则点 D 的 坐标为

- **14.** 抛物线 $y = ax^2 + bx + c(a,b,c)$ 为常数,且 $a \neq 0$) 经 过点(-1,0)和(m,0),目1 < m < 2,当x < -1时,y 随着x 的增大而减小,下列结论: ①abc > 0; ②a+b>0;③若点 $A(-3,y_1)$,点 $B(3,y_2)$ 都在抛 物线上,则 $y_1 < y_2$;④a(m-1) + b = 0;⑤若 $c \le -$ 1,则 b^2 -4ac ≤4a. 其中结论错误是 . (只 填写序号)
- **15**. (2016 遵义) 如图 1,四边形 ABCD 中,AB // CD, $\angle ADC = 90^{\circ}, P$ 从 A 点出发,以每秒 1 个单位长 度的速度,按 $A \rightarrow B \rightarrow C \rightarrow D$ 的顺序在边上匀速运 动,设P点的运动时间为t秒, $\triangle PAD$ 的面积为 S,S 关于 t 的函数图象如图 2 所示,当 P 运动到 BC 中点时, $\triangle PAD$ 的面积为

第15题图

专题二 规律探索型问题

1. (2017 自贡) 填在下面各正方形中四个数之间都 有相同的规律,根据这种规律m的值为 (

第1题图

A. 180

B. 182

C. 184

- D. 186
- **2.** (2017 扬州) 在一列数: $a_1, a_2, a_3, \dots, a_n + a_1 = 0$ 3, a, = 7, 从第三个数开始, 每一个数都等于它前 面两个数之积的个位数字,则这一列数中的第 2 017个数是

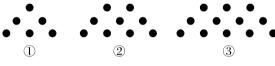
A. 1

B. 3

C. 7

3. 将全体自然数排列成如图所示[形数阵,根据排列规律,则数阵中,第10 行第6个数是

A. 49


B. 50

第3题图

C. 52

D. 48

4. (2017 烟台) 用棋子摆出下列一组图形:

第4题图

按照这种规律摆下去,第 n 个图形用的棋子个数 为

A.3n

B. 6n

C.3n + 6

D. 3n + 3

5. (2017 绵阳) 如图所示,将形状、大小完全相同的 "●"和线段按照一定规律摆成下列图形,第1幅图 形中" \bullet "的个数为 a_1 ,第 2 幅图形中" \bullet "的个数为 a_2 ,第3幅图形中"•"的个数为 a_3 ,…,以此类推,

则 $\frac{1}{a_1} + \frac{1}{a_2} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}$ 的值为

第1幅图 第2幅图

第5题图

B. $\frac{61}{84}$

C. $\frac{589}{840}$

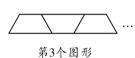
6. (2017 郴州) 已知 $a_1 = -\frac{3}{2}$, $a_2 = \frac{5}{5}$, $a_3 = -\frac{7}{10}$,

 $a_4 = \frac{9}{17}, a_5 = -\frac{11}{26}, \dots, \text{ M} \ a_8 = \underline{\hspace{1cm}}.$

7. 下列各个图形中,"·"的个数用 a 表示,"O"的 个数用 b 表示,如:当n=1 时,a=4,b=1;当n=12 时, a = 9, b = 4; ···; 根据图形的变化规律, 当 n =

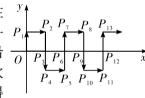
2 017时, $\sqrt{a} + \sqrt{b}$ 的值为

n = 1n=2

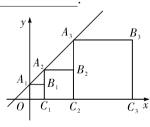

n=4

第7题图

8. (2017 玉林二模) 在一次猜数字游戏中, 小红写出 如下一组数: $1, \frac{6}{5}, \frac{9}{7}, \frac{4}{3}, \frac{15}{11}$...,小军猜想出的第


→银)下列图形都是由完全相同的小梯形 按一定规律组成的. 如果第1个图形的周长为5, 那么第2个图形的周长为 ,第2017个图形 的周长为

第9题图


10. (2017 阿坝州) 如图,在 平面直角坐标系中,一 动点从原点 O 出发,沿 着箭头所示方向,每次 移动1个单位,依次得 到点 $P_1(0,1), P_2(1,$

第10题图

1), $P_3(1,0)$, $P_4(1,-1)$, $P_5(2,-1)$, $P_6(2,0)$, \cdots ,则点 P_{2017} 的坐标是

11. (2017 衡阳) 正方形 $A_1B_1C_1O$, $A_2B_2C_2C_1$, $A_3B_3C_3C_2$,…按如图所 示放置,点 A_1,A_2,A_3 … 和 C_1 , C_2 , C_3 , …分别 在直线 y = x + 1 和 x轴上,则点 B_{2018} 的纵

第11 题图

坐标是

12. 如图,数轴上,点A的初始位置表示的数为1,现 在点A做如下移动:第1次点A向左移动3个单 位长度至点 A1,第2次从点 A1向右移动6个单 位长度至点 A2,第3次从点 A2向左移动9个单 位长度至点 43, …, 按照这种移动方式进行下 去,如果点 A_n 与原点的距离不小于20,那么n的最小值是

第12题图

专题三 代数型应用设计题

- 1. (2017 襄阳) 受益于国家支持新能源汽车发展和 "一带一路"发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014 年利润为 2 亿元,2016 年利润为 2.88 亿元.
 - (1) 求该企业从 2014 年到 2016 年利润的年平均增长率;
 - (2) 若2017 年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
- 3. (2017 辽阳) 近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注. 某单位计划在室内安装空气净化装置,需购进 *A*, *B* 两种设备. 每台 *B* 种设备价格比每台 *A* 种设备价格多0.7万元,花3万元购买 *A* 种设备和花7.2万元购买 *B* 种设备的数量相同.
 - (1) 求 A 种、B 种设备每台各多少万元?
 - (2)根据单位实际情况,需购进 A,B 两种设备共20 台,总费用不高于 15 万元,求 A 种设备至少要购买多少台?

- 2. (2017 桂林一模) 某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.
 - (1)购买一个足球,一个篮球各需多少元?
 - (2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?

- 4. (2017 **毕节**) 某同学准备购买笔和本子送给农村 希望小学的同学,在市场上了解到某种本子的单 价比某种笔的单价少 4 元,且用 30 元买这种本子 的数量与用 50 元买这种笔的数量相同.
 - (1)求这种笔和本子的单价;
 - (2)该同学打算用自己的 100 元压岁钱购买这种 笔和本子,计划 100 元刚好用完,并且笔和本子都 买,请列出所有购买方案.

5. 为了更好改善河流的水质,治污公司决定购买 10 台污水处理设备. 现有 A,B 两种型号的设备,其中每台的价格,月处理污水量如下表;经调查:购买一台 A 型设备比购买一台 B 型设备多 2 万元,购买 2 台 A 型设备比购买 3 台 B 型设备少 6 万元.

	A 型	B 型
价格(万元/台)	a	b
处理污水量(吨/月)	240	180

(1)求 a,b 的值;

(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;

(3)在(2)的条件下,若每月要求于2040吨,为了节约资金,请你

一种最省钱的购买方案.

6. (2017 陕西) 在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:"我的日子终于好了".

最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:

品种项目	产量 (斤/每棚)	销售价 (元/每斤)	成本 (元/每棚)
香瓜	2 000	12	8 000
甜瓜	4 500	3	5 000

现假设李师傅今年下半年香瓜种植的大棚数为 x

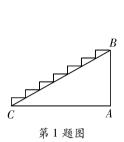
个,明年上半年8个大棚中所产的瓜全部售完后, 获得的利润为 γ 元.

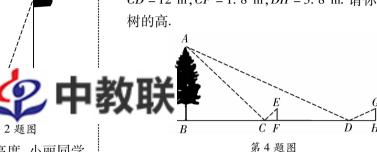
根据以上提供的信息,请你解答下列问题:

- (1)求出 y 与 x 之间的函数关系式;
- (2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.

- 7. (2017 长沙) 自从湖南与欧洲的"湘欧快线"开通后,我省与欧洲各国经贸往来日益频繁,某欧洲客商准备在湖南采购一批特色商品,经调查,用16 000元采购 A 型商品的件数是用7 500 元采购 B 型商品的件数的 2 倍,一件 A 型商品的进价比一件 B 型商品的进价多 10 元.
 - (1)求一件 A,B 型商品的进价分别为多少元?
 - (2) 若该欧洲客商购进 A,B 型商品共 250 件进行试销,其中 A 型商品的件数不大于 B 型的件数,且不小于 80 件.已知 A 型商品的售价为 240 元/件,B 型商品的售价为 220 元/件,且全部售出.设购进 A 型商品 m 件,求该客商销售这批商品的利润 v 与 m 之间的函数关系式,并写出 m 的取值范围:
 - (3)在(2)的条件下,欧洲客商决定在试销活动中每售出一件 A 型商品,就从一件 A 型商品的利润中捐献慈善资金 a 元,求该客商售完所有商品并捐献慈善资金后获得的最大收益.

几何测量型应用题 专题四


1. (2017 绥化) 某楼梯的侧面如图所示,已测得 BC 的长约为 $3.5 \, \text{米}$, $\angle BCA$ 约为 29° , 则该楼梯的高 度 AB 可表示为

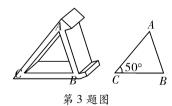

A.3.5 sin29°米

B.3.5 cos29°米

C. 3.5 tan29°米

 $D.\,\frac{3.\,5}{\cos\!29^\circ} \#$

2. (2017 绵阳) 为测量操场上旗杆的高度,小丽同学 想到了物理学中平面镜成像的原理,她拿出随身 携带的镜子和卷尺, 先将镜子放在脚下的地面上, 然后后退,直到她站直身子刚好能从镜子里看到 旗杆的顶端 E,标记好脚掌中心位置为 B,测得脚 掌中心位置 B 到镜面中心 C 的距离是 50 cm,镜 面中心 C 距离旗杆底部 D 的距离为 4 m,如图所 示. 已知小丽同学的身高是 $1.54 \, \text{m}$, 眼睛位置 A距离小丽头顶的距离是4 cm,则旗杆 DE 的高度 等于

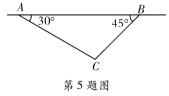

A. 10 m

B. 12 m

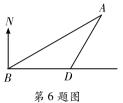
C. 12.4 m

D. 12. 32 m

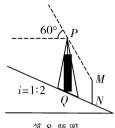
3. (2017 赤峰) 王浩同学用木板制作一个带有卡槽 的三角形手机架,如右图所示. 已知 AC = 20 cm, $BC = 18 \text{ cm}, \angle ACB = 50^{\circ},$ 王浩的手机长度为 17 cm, 宽为8 cm, 王浩同学能否将手机放入卡槽 AB 内?请说明你的理由.(提示:sin50°≈0.8,cos50° ≈ 0.6 , tan $50^{\circ} \approx 1.2$)


树尖 A. 已知小明的眼睛距离地面 1.70 m, 量得 CD = 12 m, CF = 1.8 m, DH = 3.8 m. 请你求出松

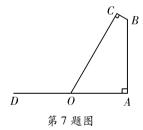
4. (2018 原创)小明想用镜子测量一棵松树的高度,


但因树旁有一条河,不能测量镜子与树之间的距 离,于是他两次利用镜子,如图所示,第一次他把

镜子放在 C 点,人在 F 点时正好在镜子中看到树

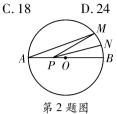

5. (2017 宿迁) 如图所示,飞机在一定高度上沿水平 直线飞行,先在点A处测得正前方小岛C的俯角 为 30° , 面向小岛方向继续飞行 10 km 到达 B 处, 发现小岛在其正后方,此时测得小岛的俯角为 45°,如果小岛高度忽略不计,求飞机飞行的高度. (结果保留根号)

6. (2017 十堰) 如图,海中有一小岛 A,它周围 8 海里内有暗礁,渔船跟踪鱼群由西向东航行,在 B点测得小岛 A 在北偏东 60°方向上,航行 12 海里到达 D 点,这时测得小岛 A 在北偏东 30°方向上.如果渔船不改变航线继续向东航行,有没有触礁的危险?


8. (2017 达州) 如图,信号塔 PQ 座落在坡度 i = 1:2 的山坡上,其正前方直立着一警示牌. 当太阳光线 与水平线成 60° 角时,测得信号塔 PQ 落在斜坡上 的影子 QN 长为 $2\sqrt{5}$ 米,落在警示牌上的影子 MN 长为 3 米,求信号塔 PQ 的高. (结果不取近似值)

第8题图

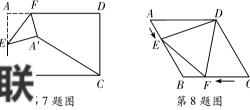
7. (2017 **凉山州**) 如图, 若要在宽 *AD* 为 20 米的城南 大道两边安装路灯, 路灯的灯臂 *BC* 长 2 米, 且与 灯柱 *AB* 成 120°角, 路灯采用圆锥形灯罩, 灯罩的 轴线 *CO* 与灯臂 *BC* 垂直, 当灯罩的轴线 *CO* 通过 公路路面的中心线时照明效果最好,此时,路灯的 灯柱 *AB* 高应该设计为多少米? (结果保留根号)



专题五 几何中的动态变换问题

1. (2017 广州) 如图, E, F 分别是 $\square ABCD$ 的边 AD, BC 上的点, EF = 6, $\angle DEF = 60^{\circ}$, 将四边形 EFCD沿 EF 翻折,得到 EFC'D', ED'交 BC 于点 G,则 $\triangle GEF$ 的周长为 (

A. 6 B. 12


第1题图

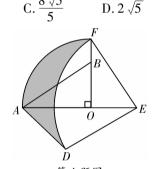
2. (2015 **南宁**) 如图, $AB \in O$ 的直径.AB = 8. 点 M在 $\odot O$ 上, ∠ $MAB = 20^{\circ}$, N 是弧 N直径 AB 上的一动点. 若 MN = 1的最小值为

B. 5

6. (2017 钦州模拟) 如图, 在 $\triangle ABC$ 中, $\angle BAC$ =

7. (2017 贵阳)如图,在矩形纸片 ABCD 中,AB = 2, AD = 3, $\triangle E = AB$ 的中点, $\triangle F = AD$ 边上的一 个动点,将 $\triangle AEF$ 沿 EF 所在直线翻折,得到

 $\triangle A'EF$,则 A'C 的长的最小值是


 50° , AC = 2, AB = 3. 现将 $\triangle ABC$ 绕 A 点逆时旋转

50°得到 $\triangle AB_1C_1$,则图中的阴影部分的面积

3. (2017 玉林一模) 如图, △ABC 中, ∠ABC = 90°, AB = 2, BC = 4, 现将 $\triangle ABC$ 绕顶点 B 顺时针方向 旋转到 $\triangle A'BC'$ 的位置,此时A'C'与BC的交点D是 BC 的中点,则线段 C'D 的长度是 (

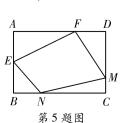
C. 6

A. 4

- - 第3题图 第4题图
- **4**. (2016 桂林) 如图,在 Rt △AOB 中,∠AOB = 90°, OA = 2, OB = 2, 将 Rt $\triangle AOB$ 绕点 O 顺时针旋转 90°后得 Rt $\triangle FOE$,将线段 EF 绕点 E 逆时针旋转 90°后得线段 ED,分别以 O,E 为圆心,OA,ED 的 长为半径画 \widehat{AF} 和 \widehat{DF} ,连接 \widehat{AD} ,则图中阴影部分面 积是

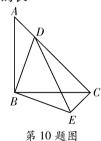
B. $\frac{5\pi}{4}$ Α. π

 $C.3 + \pi$

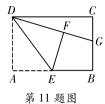

 $D.8 - \pi$

5. (2017 贵港一模) 如图, 在矩形 ABCD 中, E 是 AB 边的中点,F 在 AD 边上,M,N 分别是 CD,BC 边 上的动点, 若 AB = AF = 2, AD = 3, 则四边形 EFMN 周长的最小值是

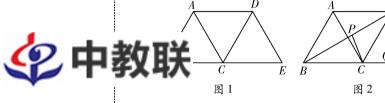
A. 2 + $\sqrt{13}$


B. $2\sqrt{2} + 2$

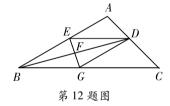
C. 5 + $\sqrt{5}$



D. 8 第6题图


- 8. 如图,在菱形 ABCD 中,AB = 4 cm, $\angle ADC = 120^{\circ}$, 点 E,F 同时由 A,C 两点出发,分别沿 AB,CB 方 向向点B匀速移动(到点B为止),点E的速度为 1 cm/s,点 F 的速度为 2 cm/s,经过 t 秒 $\triangle DEF$ 为 等边三角形,则t的值为
- 9. (2017 河南)如图,在 Rt △ABC +, $\angle A = 90^{\circ}$, AB = AC, BC = $\sqrt{2}+1$,点 M,N 分别是边 BC, AB 上的动点,沿 MN 所在的直 B线折叠 $\angle B$, 使点 B 的对应点 B'始终落在边 AC 上,若 $\triangle MB'C$ 为直角三角形, 则BM的长为
- **10**. 如图,等腰 Rt $\triangle ABC$ 中, BA = BC, $\angle ABC = 90^{\circ}$. 点 D 在 AC 上,将 $\triangle ABD$ 绕点 B 沿顺时针方向旋 转 90°后,得到△CBE.
 - (1)求 $\angle DCE$ 的度数;
 - (2) 若 AB = 4, CD = 3AD, 求 DE 的长.

- 11. 如图,在矩形 ABCD 中, E 是边 AB 的中点,连接 DE, $\triangle ADE$ 沿 DE 折叠后得到 $\triangle FDE$, 点 F 在矩 形 ABCD 的内部,延长 DF 交于 BC 于点 G.
 - (1)求证:FG = BG;
 - (2)若AB = 6,BC = 4,求DG的长.

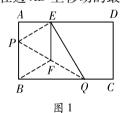

- **13**. 已知三个全等的等边三角形如图 1 所示放置,其中点 B, C, E 在同一直线上,
 - (1)写出两个不同类型的结论;
 - (2)如图 2,连接 BD, P 为 BD 上的动点(D 点除外), DP 绕点 D 逆时针旋转 60° 到 DQ, 连接 PC, QE,
 - ①判断 CP 与 QE 的大小关系,并说明理由;
 - ②若等边三角形的边长为 2,连接 AP,在 BD 上是否存在点 P,使 AP+CP+DP 的值最小,并求最小值.

第13题图

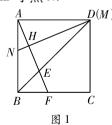
12. 如图, BD 是 $\triangle ABC$ 的角平分线, 它的垂直平分线分别交 AB, BD, BC 于点 E, F, G, 连接 ED, DG. (1)请判断四边形 EBGD 的形状, 并说明理由; (2)若 $\triangle ABC = 30^{\circ}$, $\triangle C = 45^{\circ}$, $ED = 4\sqrt{6}$, 点 H

是 BD 上的一个动点, 求 HG + HC 的最小值.

专题六 特殊图形的相关证明与计算

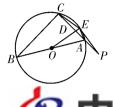

- **1.** (2017 **贺州**) 如图, $\odot O$ 是 $\triangle ABC$ 的外接圆, AB 为直径, $\angle BAC$ 的平分线交 $\odot O$ 于点 D, 过点 D 的切线分别交 AB, AC 的延长线于 E, F, 连接 BD.
 - (1)求证: $AF \perp EF$;
 - (2)若AC = 6,CF = 2,求 $\odot 0$ 的半径.

- ①设 BF = y cm,求 y 关于 t 的函数表达式;
- ②当 BN = 2 AN 时, 连接 FN, 求 FN 的长.

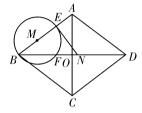

- 3. (2017 德州) 如图 1, 在矩形纸片 *ABCD* 中, *AB* = 3 cm, *AD* = 5 cm, 折叠纸片使 *B* 点落在边 *AD* 上的点 *E* 处, 折痕为 *PQ*, 过点 *E* 作 *EF* // *AB* 交 *PQ* 于点 *F*, 连接 *BF*.
 - (1)求证:四边形 BFEP 为菱形;
 - (2)当点 E 在 AD 边上移动时,折痕的端点 P, Q 也随之移动;
 - ①当点 Q 与点 C 重合时(如图 2),求菱形 BFEP 的边长;
 - ②若限定 P,Q 分别在边 BA,BC 上移动,求出点 E 在边 AD 上移动的最大距离.

P E C(Q)

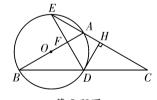
第3题图


2. (2017 **菏泽**) 正方形 ABCD 的边长为 6 cm,点 E,M 分别是线段 BD,AD 上的动点,连接 AE 并延长,交边 BC 于点 F,过 M 作 $MN \perp AF$,垂足为点 H,交边 AB 于点 N.

第2题图


- (1)如图 1,若点 M与点 D 重合,求证:AF = MN;
- (2)如图 2,若点 M 从点 D 出发,以 1 cm/s 的速度 沿 DA 向点 A 运动,同时点 E 从点 B 出发,以 $\sqrt{2}$ cm/s的速度沿 BD 向点 D 运动,运动时间为 t s.

- **4.** (2016 柳州) 如图, AB 为 $\triangle ABC$ 外接圆 $\bigcirc O$ 的直 径, 点 P 是线段 CA 延长线上一点, 点 E 在圆上且 满足 $PE^2 = PA \cdot PC$, 连接 CE, AE, OE, OE 交 CA 干点 D.
 - (1)求证: $\triangle PAE \hookrightarrow \triangle PEC$;
 - (2) 求证:PE 为⊙0 的切线;
 - (3)若 $\angle B = 30^{\circ}$, $AP = \frac{1}{2}AC$,求证:DO = DP.

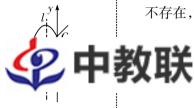

- **6.** (2017 烟台) 如图,菱形 ABCD 中,对角线 AC,BD 相交于点 O,AC = 12 cm,BD = 16 cm,动点 N 从点 D 出发,沿线段 DB 以 2 cm/s 的速度向点 B 运动,同时动点 M 从点 B 出发,沿线段 BA 以 1 cm/s 的速度向点 A 运动,当其中一个动点停止运动时另一个动点也随之停止. 设运动时间为 t(s)(t>0),以点 M 为圆心,MB 长为半径的 $\odot M$ 与射线 BA,线段 BD 分别交于点 E,F,连接 EN.
 - (1)求 *BF* 的长(用含有 t 的代数式表示),并求出 t 的取值范围:
 - (2) 当 t 为何值时,线段 EN 与⊙M 相切?
 - (3) 若⊙M 与线段 EN 只有一个公共点,求 t 的取

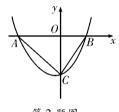
第6题图

- 5. (2017 成都) 如图,在 $\triangle ABC$ 中,AB = AC,以 AB 为直径作圆 O,分别交 BC 于点 D,交 CA 的延长线于点 E,过点 D 作 $DH \bot AC$ 于点 H,连接 DE 交线段 OA 于点 F.
 - (1)求证:DH 是圆 O 的切线;
 - (2) 若 A 为 EH 的中点,求 $\frac{EF}{FD}$ 的值;
 - (3)若 EA = EF = 1,求圆 O 的半径.

第5题图

- 7. (2017 大庆) 如图, 四边形 ABCD 内接于圆 O, $\angle BAD = 90^{\circ}$, AC 为直径, 过点 A 作圆 O 的切线交 CB 的延长线于点 E, 过 AC 的三等分点 F(靠近点 C)作 CE 的平行线交 AB 于点 G, 连接 CG.
 - (1)求证:AB = CD;
 - (2)求证: $CD^2 = BE \cdot BC$;
 - (3) 当 $CG = \sqrt{3}$, $BE = \frac{9}{2}$ 时, 求 CD 的长.


- 8. (2016 来宾) 如图, 在矩形 *ABCD* 中, *AB* = 10, *AD* = 6, 点 *M* 为 *AB* 上的一动点, 将矩形 *ABCD* 沿某一直线对折, 使点 *C* 与点 *M* 重合, 该直线与 *AB* (或 *BC*), *CD*(或 *DA*)分别交于点 *P*, *Q*.
 - (1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹);
 - (2) 如果 PQ 与 AB, CD 都相交, 试判断 $\triangle MPQ$ 的 形状并证明你的结论;
 - (3)设AM = x, d 为点M 到直线PQ 的距离, $y = d^2$,①求y关于x 的函数解析式,并指出x 的取值范围;②当直线PQ 恰好通过点D 时,求点M 到直线PQ 的距离.


第8题图

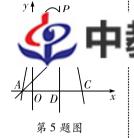
专题七 抛物线背景下的几何探究型(压轴题)

- <0,c>0)与x轴交于A,B两点,与y轴交于点C, 其对称轴 l 为 x = -1, 直线 y = kx + m 经过 A, C两点,与抛物线的对称轴 l 交于点 D,且 AD = 2CD,连接 BC,BD.
 - (1)求 A,B 两点的坐标;
 - (2)求证:a = -k;
 - (3) 若△BCD 是直角三角形,求抛物线的解析式.
- **1.** (2017 贵港一模) 如图,已知抛物线 $y = ax^2 + bx + c(a + 2)$ **2.** (2016 贵港) 如图, 抛物线 $y = ax^2 + bx 5(a \neq 0)$ 与 x 轴交于点 A(-5,0) 和点 B(3,0) ,与 y 轴交 于点 C.
 - (1) 求该抛物线的解析式;
 - (2) 若点 E 为 x 轴下方抛物线上的一动点, 当 $S_{\land ABE} = S_{\land ABC}$ 时,求点 E 的坐标;
 - (3)在(2)的条件下, 抛物线上是否存在点 P, 使 $\angle BAP = \angle CAE$? 若存在,求出点 P 的横坐标;若 不存在,请说明理由.

第1题图

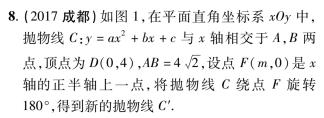
第2题图

- 3. (2017 新疆) 如图, 抛物线 $y = -\frac{1}{2}x^2 + \frac{3}{2}x + 2$ 与 x 轴交于点 A, B, 与 y 轴交于点 C.
 - (1)试求 A,B,C 的坐标;
 - (2)将 $\triangle ABC$ 绕 AB 中点 M 旋转 180° ,得到 $\triangle BAD$.
 - ①求点 D 的坐标;
 - ②判断四边形 ADBC 的形状,并说明理由;
 - (3)在该抛物线对称轴上是否存在点 P,使 $\triangle BMP$ 与 $\triangle BAD$ 相似?若存在,请直接写出所有满足条件的 P点的坐标;若不存在,请说明理由.
- **4.** (2016 河池) 在平面直角坐标系中, 抛物线 $y = -x^2 2x + 3$ 与 x 轴交于 A, B 两点 ($A \in B$ 的 E 例), 与 Y 轴交于点 E0, 顶点为 E0.
 - (1)请直接写出点 A,C,D 的坐标;
 - (2)如图 1,在 x 轴上找一点 E,使得 $\triangle CDE$ 的周 长最小,求点 E 的坐标;
 - (3)如图 2,F 为直线 AC 上的动点,在抛物线上是否存在点 P,使得 $\triangle AFP$ 为等腰直角三角形?若存在,求出点 P 的坐标,若不存在,请说明理由.

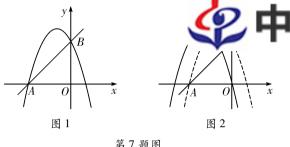

A B X

第4题图

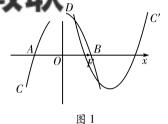
- 5. (2017 乌鲁木齐) 如图, 抛物线 $y = ax^2 + bx + c$ ($a \in \mathbf{6}$. (2017 聊城) 如图, 已知抛物线 $y = ax^2 + 2x + c$ ($a \in \mathbf{6}$. $\neq 0$) 与直线y = x + 1相交干 A(-1.0), B(4.m) 两 点,且抛物线经过点 C(5,0).
 - (1)求抛物线的解析式;
 - (2)点 P 是抛物线上的一个动点(不与点 A,点 B重合),过点 P 作直线 $PD \perp x$ 轴于点 D,交直线 AB 于点 E.
 - ①当 PE = 2ED 时,求 P 点坐标;
 - ②是否存在点 P 使 △BEC 为等腰三角形? 若存 在请直接写出点 P 的坐标; 若不存在, 请说明 理由.

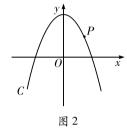

- $\neq 0$) 与 γ 轴交于点 A(0,6) , 与 x 轴交于点 B(6,0),点 P 是线段 AB 上方抛物线上的一个动点.
 - (1)求这条抛物线的表达式及其顶点坐标;
 - (2) 当点 P 移动到抛物线的什么位置时, 使得 $\angle PAB = 75^{\circ}$,求出此时点 P 的坐标;
 - (3) 当点 P 从 A 点出发沿线段 AB 上方的抛物线 向终点 B 移动, 在移动中, 点 P 的横坐标以每秒 1 个单位长度的速度变动,与此同时点M以每秒1 个单位长度的速度沿 AO 向终点 O 移动,点 P,M移动到各自终点时停止, 当两个动点移动 t 秒时, 求四边形 PAMB 的面积 S 关于 t 的函数表达式,

 \blacksquare 1何值时,S有最大值,最大值是多少?


第6题图

- 7. (2017 钦州一模) 如图 1, 在平面直角坐标系中, 抛物线 $y = -\frac{1}{2}x^2 + bx + c 与 x 轴交于点$ A(-4,0),与y轴交于点B(0,4).
 - (1)求抛物线的函数解析式;
 - (2)在x轴上有一点P,点P在直线AB的垂线段
 - (3)如图 2,将原抛物线向左平移,使平移后的抛 物线过原点,与原抛物线交于点D,在平移后的抛 物线上是否存在点 E,使 $S_{\land APE} = S_{\land ACD}$? 若存在, 请求出点 E 的坐标,若不存在,请说明理由.




- (1)求抛物线 C 的函数表达式;
- (2) 若抛物线 C' 与抛物线 C 在 y 轴的右侧有两个 不同的公共点,求m的取值范围.
- (3) 如图 2,P 是第一象限内抛物线 C 上一点,它 到两坐标轴的距离相等,点 P 在抛物线 C'上的对 应点 P', 设点 $M \in C$ 上的动点, 点 $N \in C'$ 上的动 占 计宏究四边形 PMP'N 能否成为正方形? 若

m 的值;若不能,请说明理由.

第7题图

第8题图